
- •Система отсчета. Траектория материальной точки. Скорость, как производная радиус-вектора по времени.
- •Угловая скорость и угловое ускорение, их связь с линейными величинами.
- •Закон инерции. Инерциальная система отсчета. Масса, сила, второй закон Ньютона.
- •Третий закон Ньютона. Механическая система. Внешние и внутренние силы.
- •Импульс материальной точки и системы материальных точек. Закон сохранения импульса.
- •Энергия, как мера различных форм движения и взаимодействия материи. Работа силы и ее выражение через криволинейный интеграл.
- •Кинетическая энергия материальной точки и системы материальных точек и ее связь с работой внешних сил.
- •Поле, как форма материи, осуществляющая силовые взаимодействия. Консервативные и неконсервативные силы.
- •Потенциальная энергия материальной точки во внешнем силовом поле и ее связь с силой. Понятие о градиенте скалярной функции.
- •Закон сохранения механической энергии.
- •Удар абсолютно упругих тел.
- •Удар абсолютно неупругих тел.
- •Момент инерции материальной точки и твердого тела. Теорема Штейнера. Кинетическая энергия вращения.
- •Момент силы. Уравнение динамики вращательного движения твёрдого тела.
- •Момент импульса твердого тела. Закон сохранения момента импульса.
- •Инерциальные системы отсчета. Преобразования Галилея. Механический принцип относительности.
- •Гармонические колебания и их характеристики. Дифференциальное уравнение гармонических колебаний.
- •Пружинный, физический и математический маятники.
- •Энергия гармонических колебаний.
- •Сложение гармонических колебаний с одинаковой амплитудой и близкими частотами (биения).
- •Волны в упругой среде. Поперечные и продольные волны. Уравнение бегущей волны.
- •Образование стоячих волн. Уравнение стоячей волны.
- •Законы идеального газа. Уравнение Клапейрона-Менделеева.
- •Основное уравнение молекулярно-кинетической теории идеальных газов.
- •Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •Явление переноса. Опытные законы диффузии, теплопроводности и внутреннего трения.
- •Внутренняя энергия системы. Число степеней свободы молекулы. Законы равномерного распределения энергии по степеням свободы молекул.
- •Первое начало термодинамики. Работа газа при изменении его объема.
- •Теплоемкость. Уравнение Майера.
- •Применение первого начала термодинамики к изопроцессам.
- •Адиабатический процесс.
- •Круговой процесс или цикл. Обратимые и необратимые процессы.
- •Тепловые двигатели и холодильные машины. Второе начало термодинамики.
- •Цикл Карно и его кпд для идеального газа.
- •Силы и потенциальная энергия межмолекулярного взаимодействия. Особенности жидкого и твердого состояния.
- •Агрегатное и фазовое состояние вещества. Фазовые переходы I и II рода.
- •Отступление от законов идеального газа. Реальные газы. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса. Внутренняя энергия реального газа.
- •Электрический заряд. Электростатическое поле. Закон Кулона.
- •Напряженность электростатического поля. Силовые линии электростатического поля. Принцип суперпозиции электростатического поля.
- •Поток вектора напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме и ее применение к расчету полей.
- •Равномерно заряженная бесконечная плоскость
- •Бесконечная равномерно заряженная нить
- •Работа электростатического поля по перемещению в нем заряда. Циркуляция вектора напряженности электростатического поля.
- •Потенциал электростатического поля.
- •Связь напряженности и потенциала электростатического поля. Эквипотенциальные поверхности.
- •Типы диэлектриков. Поляризация диэлектриков.
- •Поляризация диэлектриков
- •Вектор поляризации. Напряженность поля в диэлектрике.
- •Вектор электрического смещения. Теорема Остроградского-Гаусса для электростатического поля в диэлектриках.
- •Проводники в электростатическом поле. Распределение зарядов в проводниках. Поле внутри проводника и на его поверхности.
- •Напряженность электрического поля внутри проводника должна быть равной нулю:
- •Электроемкость уединенного проводника и конденсатора. Конденсаторы. Электроемкость плоского конденсатора. Соединения конденсаторов.
- •Энергия системы неподвижных точечных зарядов, заряженного проводника, конденсатора. Энергия электростатического поля. Объемная плотность энергии.
Энергия гармонических колебаний.
При механических колебаниях колеблющееся тело (или материальная точка) обладает кинетической и потенциальной энергией. Кинетическая энергия тела W:
Для вычисления потенциальной энергии тела воспользуемся самой общей формулой, связывающей силу и потенциальную энергию тела в поле этой силы:
где U - потенциальная энергия, набираемая (или теряемая) телом, движущимся в силовом поле F от точки 0 (точки, в которой потенциальная энергия принимается равной 0) до точки х.
Для силы, линейно зависящей от смещения (как в случае наших механических маятников, такие силы носят общее название квазиупругих сил) мы имеем:
Сравнивая формулы для кинетической и потенциальной энергии механического маятника, можно сделать следующие выводы:
Полная механическая энергия тела не изменяется при колебаниях:
2. Частота колебаний кинетической и потенциальной энергии в 2 раза больше частоты колебаний маятника.
3. Колебания кинетической и потенциальной энергии сдвинуты друг относительно друга по фазе на π (на полпериода). Когда кинетическая энергия достигает максимума, потенциальная - минимума (нуля) и наоборот. Энергия при колебаниях постоянно перекачивается из потенциальной в кинетическую и обратно.
Сложение гармонических колебаний с одинаковой амплитудой и близкими частотами (биения).
БИЕНИЯ - периодические изменения во времени амплитуды колебания, возникающего при сложении двух гармонических колебаний с близкими частотами. Биения появляются вследствие того, что величина разности фаз между двумя колебаниями с различными частотами всё время изменяется так, что оба колебания оказываются в какой-то момент времени в фазе, через некоторое время в противофазе, затем снова в фазе и т.д. Соответственно амплитуда результирующего колебания периодически достигает то максимума, равного сумме амплитуд складываемых колебаний, то минимума, равного разности этих амплитуд (рис.). Напр., биения возникают при звучании двух камертонов с близкими частотами - звук поочерёдно усиливается и ослабевает, при сложении нормальных колебаний с близкими частотами в связанных линейных осцилляторах.
Биения, возникающие в результате сложения двух гармонических колебаний с одинаковыми амплитудами и близкими частотами.
При сложении двух бегущих в одном направлении волн с близкими частотами и волновыми числами биения возникают не только во времени, но и в пространстве. Складывая, напр., волны с равными амплитудами
Получаем результирующую волну
Волны в упругой среде. Поперечные и продольные волны. Уравнение бегущей волны.
Если в каком-либо месте упругой (твердой, жидкой или газообразной) среды возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью v. Процесс распространения колебаний в пространстве называется волной.
Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия. В зависимости от направления колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль направления распространения волны. В поперечной волне частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Упругие поперечные волны могут возникнуть лишь в среде, обладающей сопротивлением сдвигу.
Продольные волны могут возбуждаться в средах, в которых возникают упругие силы при деформации сжатия и растяжения, т. е. твердых, жидких и газообразных телах. Поперечные волны могут возбуждаться в среде, в которой возникают упругие силы при деформации сдвига, т. е. в твердых телах; в жидкостях и газах возникают только продольные волны, а в твердых телах — как продольные, так и поперечные.
Уравнение волны и основные характеристики
–
уравнение
волны, волна распространяется вдоль
ось Ох.
k- волновое число, оно показывает сколько раз укладывается х в нем.
-
длина волны. Длина
волны –
это минимальное расстояние между
точками, которые колеблются в одинаковой
фазе.
- скорость распространения волны
-
частота колебаний
-
циклическая частота
Т – период колебания
Уравнение плоской одномерной синусоидальной волны:
Вместо синуса можно написать косинус.) Это уравнение отличается от уравнения синусоидальных колебаний тем, что колеблющая величина S зависит не только от времени, но и от координаты. Это и понятно: вместо одного маятника мы имеем множество связанных маятников - частиц среды. v - скорость распространения волны, А - амплитуда волны, аргумент синуса - фаза волны, - начальная фаза колебаний в точке х = 0, - частота (циклическая) волны.
Расстояние,
на которое распространяется волна за
время, равное периоду колебаний,
называется ДЛИНОЙ
ВОЛНЫ
.
ВОЛНОВОЕ ЧИСЛО k:
С помощью введенного волнового числа уравнение волны запишется:
Если мы рассматриваем не одномерную волну, удобно наряду с волновым числом ввести ВОЛНОВОЙ ВЕКТОР k, модуль которого равен волновому числу, а направление совпадает с направлением луча (направлением распространения волны). В векторном виде уравнение волны будет выглядеть так:
здесь r - радиус вектор точки пространства; - начальная фаза колебаний в начале координат.