
- •Система отсчета. Траектория материальной точки. Скорость, как производная радиус-вектора по времени.
- •Угловая скорость и угловое ускорение, их связь с линейными величинами.
- •Закон инерции. Инерциальная система отсчета. Масса, сила, второй закон Ньютона.
- •Третий закон Ньютона. Механическая система. Внешние и внутренние силы.
- •Импульс материальной точки и системы материальных точек. Закон сохранения импульса.
- •Энергия, как мера различных форм движения и взаимодействия материи. Работа силы и ее выражение через криволинейный интеграл.
- •Кинетическая энергия материальной точки и системы материальных точек и ее связь с работой внешних сил.
- •Поле, как форма материи, осуществляющая силовые взаимодействия. Консервативные и неконсервативные силы.
- •Потенциальная энергия материальной точки во внешнем силовом поле и ее связь с силой. Понятие о градиенте скалярной функции.
- •Закон сохранения механической энергии.
- •Удар абсолютно упругих тел.
- •Удар абсолютно неупругих тел.
- •Момент инерции материальной точки и твердого тела. Теорема Штейнера. Кинетическая энергия вращения.
- •Момент силы. Уравнение динамики вращательного движения твёрдого тела.
- •Момент импульса твердого тела. Закон сохранения момента импульса.
- •Инерциальные системы отсчета. Преобразования Галилея. Механический принцип относительности.
- •Гармонические колебания и их характеристики. Дифференциальное уравнение гармонических колебаний.
- •Пружинный, физический и математический маятники.
- •Энергия гармонических колебаний.
- •Сложение гармонических колебаний с одинаковой амплитудой и близкими частотами (биения).
- •Волны в упругой среде. Поперечные и продольные волны. Уравнение бегущей волны.
- •Образование стоячих волн. Уравнение стоячей волны.
- •Законы идеального газа. Уравнение Клапейрона-Менделеева.
- •Основное уравнение молекулярно-кинетической теории идеальных газов.
- •Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •Явление переноса. Опытные законы диффузии, теплопроводности и внутреннего трения.
- •Внутренняя энергия системы. Число степеней свободы молекулы. Законы равномерного распределения энергии по степеням свободы молекул.
- •Первое начало термодинамики. Работа газа при изменении его объема.
- •Теплоемкость. Уравнение Майера.
- •Применение первого начала термодинамики к изопроцессам.
- •Адиабатический процесс.
- •Круговой процесс или цикл. Обратимые и необратимые процессы.
- •Тепловые двигатели и холодильные машины. Второе начало термодинамики.
- •Цикл Карно и его кпд для идеального газа.
- •Силы и потенциальная энергия межмолекулярного взаимодействия. Особенности жидкого и твердого состояния.
- •Агрегатное и фазовое состояние вещества. Фазовые переходы I и II рода.
- •Отступление от законов идеального газа. Реальные газы. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса. Внутренняя энергия реального газа.
- •Электрический заряд. Электростатическое поле. Закон Кулона.
- •Напряженность электростатического поля. Силовые линии электростатического поля. Принцип суперпозиции электростатического поля.
- •Поток вектора напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме и ее применение к расчету полей.
- •Равномерно заряженная бесконечная плоскость
- •Бесконечная равномерно заряженная нить
- •Работа электростатического поля по перемещению в нем заряда. Циркуляция вектора напряженности электростатического поля.
- •Потенциал электростатического поля.
- •Связь напряженности и потенциала электростатического поля. Эквипотенциальные поверхности.
- •Типы диэлектриков. Поляризация диэлектриков.
- •Поляризация диэлектриков
- •Вектор поляризации. Напряженность поля в диэлектрике.
- •Вектор электрического смещения. Теорема Остроградского-Гаусса для электростатического поля в диэлектриках.
- •Проводники в электростатическом поле. Распределение зарядов в проводниках. Поле внутри проводника и на его поверхности.
- •Напряженность электрического поля внутри проводника должна быть равной нулю:
- •Электроемкость уединенного проводника и конденсатора. Конденсаторы. Электроемкость плоского конденсатора. Соединения конденсаторов.
- •Энергия системы неподвижных точечных зарядов, заряженного проводника, конденсатора. Энергия электростатического поля. Объемная плотность энергии.
Энергия, как мера различных форм движения и взаимодействия материи. Работа силы и ее выражение через криволинейный интеграл.
Энергия - универсальная мера различных форм движения и взаимодействия. Различные формы энергии связывают с различными формами движения материи: механическую, тепловую, электромагнитную, ядерную и пр. В одних случаях форма движения материи не изменяется (например, холодное тело нагревает горячее), в других - переходит в другую форму (например, механическое движение превращается в тепловое в результате трения). Однако существенно, что во всех перечисленных случаях энергия, отданная (в той или иной форме) от одного тела другому телу, равна энергии, которую получило последнее тело.
Работа,
совершенная постоянной силой
при перемещении тела на прямолинейном
участке пути
,
равна
,
где
– угол между векторами силы
и перемещением
.
Рис. 7.1 |
Очевидно, что площадь прямоугольника, заштрихованного на рисунке 7.1, численно равна работе при перемещении тела из точки с координатой x1 в точку с координатойx2.
|
|
Если взять участок траектории от точки 1 до точки 2, то работа на нем равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Поэтому эту сумму можно привести к интегралу
|
|
Кинетическая энергия материальной точки и системы материальных точек и ее связь с работой внешних сил.
Кинетическая энергия это способность тела преодолевать препятствование во время движения.
Кинетическая энергия материальной точки
Кинетической энергией материальной точки называется скалярная величина, которая равняется половине произведения массы точки на квадрат ее скорости.
Кинетическая энергия:
характеризует и поступательное, и вращательное движения;
не зависит от направления движения точек системы и не характеризует изменение этих направлений;
характеризует действие и внутренних, и внешних сил.
Кинетическая энергия механической системы
Кинетическая энергия системы равняется сумме кинетических энергий тел системы. Кинетическая энергия зависит от вида движения тел системы.
Изменение
кинетической энергии механической
системы равно алгебраической сумме
работ всех внешних и внутренних сил,
действующих на эту систему
,
если система не деформируется, то работа
внутренних сил равна нулю
,
тогда
.
Поле, как форма материи, осуществляющая силовые взаимодействия. Консервативные и неконсервативные силы.
Физики до XIX века считали, что абсолютно пустого пространства не существует, что все заполнено какой-то средой, например мировым эфиром, через который и осуществляется взаимодействие. Однако к ХХ веку выяснилось, что нет никакого эфира, через который якобы передается взаимодействие. Современная физика утверждает, что силовые взаимодействия осуществляются полями, то есть тело 1 возбуждает в окружающем пространстве силовое поле, которое в месте нахождения тела 2 проявляется в виде действующих на него сил. В свою очередь тело 2 возбуждает аналогичное силовое поле, действующее на тело 1.
Поле – это объективная реальность, посредством которой передаётся взаимодействие. Поле, наряду с веществом, является одним из видов материи.
Консервативными называются силы, работа которых не зависит от формы траектории, а определяется только положением её начальной и конечной точек.
К классу консервативных относятся, например, гравитационные силы, упругие, силы электростатического взаимодействия.
Силы, работа которых на замкнутом пути не равна нулю, называются неконсервативными. К числу таких сил относятся, например, сила трения и сила вязкого сопротивления. Легко понять, что при движении частицы по замкнутому контуру работа подобных сил будет отрицательной.