
- •Система отсчета. Траектория материальной точки. Скорость, как производная радиус-вектора по времени.
- •Угловая скорость и угловое ускорение, их связь с линейными величинами.
- •Закон инерции. Инерциальная система отсчета. Масса, сила, второй закон Ньютона.
- •Третий закон Ньютона. Механическая система. Внешние и внутренние силы.
- •Импульс материальной точки и системы материальных точек. Закон сохранения импульса.
- •Энергия, как мера различных форм движения и взаимодействия материи. Работа силы и ее выражение через криволинейный интеграл.
- •Кинетическая энергия материальной точки и системы материальных точек и ее связь с работой внешних сил.
- •Поле, как форма материи, осуществляющая силовые взаимодействия. Консервативные и неконсервативные силы.
- •Потенциальная энергия материальной точки во внешнем силовом поле и ее связь с силой. Понятие о градиенте скалярной функции.
- •Закон сохранения механической энергии.
- •Удар абсолютно упругих тел.
- •Удар абсолютно неупругих тел.
- •Момент инерции материальной точки и твердого тела. Теорема Штейнера. Кинетическая энергия вращения.
- •Момент силы. Уравнение динамики вращательного движения твёрдого тела.
- •Момент импульса твердого тела. Закон сохранения момента импульса.
- •Инерциальные системы отсчета. Преобразования Галилея. Механический принцип относительности.
- •Гармонические колебания и их характеристики. Дифференциальное уравнение гармонических колебаний.
- •Пружинный, физический и математический маятники.
- •Энергия гармонических колебаний.
- •Сложение гармонических колебаний с одинаковой амплитудой и близкими частотами (биения).
- •Волны в упругой среде. Поперечные и продольные волны. Уравнение бегущей волны.
- •Образование стоячих волн. Уравнение стоячей волны.
- •Законы идеального газа. Уравнение Клапейрона-Менделеева.
- •Основное уравнение молекулярно-кинетической теории идеальных газов.
- •Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •Явление переноса. Опытные законы диффузии, теплопроводности и внутреннего трения.
- •Внутренняя энергия системы. Число степеней свободы молекулы. Законы равномерного распределения энергии по степеням свободы молекул.
- •Первое начало термодинамики. Работа газа при изменении его объема.
- •Теплоемкость. Уравнение Майера.
- •Применение первого начала термодинамики к изопроцессам.
- •Адиабатический процесс.
- •Круговой процесс или цикл. Обратимые и необратимые процессы.
- •Тепловые двигатели и холодильные машины. Второе начало термодинамики.
- •Цикл Карно и его кпд для идеального газа.
- •Силы и потенциальная энергия межмолекулярного взаимодействия. Особенности жидкого и твердого состояния.
- •Агрегатное и фазовое состояние вещества. Фазовые переходы I и II рода.
- •Отступление от законов идеального газа. Реальные газы. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса. Внутренняя энергия реального газа.
- •Электрический заряд. Электростатическое поле. Закон Кулона.
- •Напряженность электростатического поля. Силовые линии электростатического поля. Принцип суперпозиции электростатического поля.
- •Поток вектора напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме и ее применение к расчету полей.
- •Равномерно заряженная бесконечная плоскость
- •Бесконечная равномерно заряженная нить
- •Работа электростатического поля по перемещению в нем заряда. Циркуляция вектора напряженности электростатического поля.
- •Потенциал электростатического поля.
- •Связь напряженности и потенциала электростатического поля. Эквипотенциальные поверхности.
- •Типы диэлектриков. Поляризация диэлектриков.
- •Поляризация диэлектриков
- •Вектор поляризации. Напряженность поля в диэлектрике.
- •Вектор электрического смещения. Теорема Остроградского-Гаусса для электростатического поля в диэлектриках.
- •Проводники в электростатическом поле. Распределение зарядов в проводниках. Поле внутри проводника и на его поверхности.
- •Напряженность электрического поля внутри проводника должна быть равной нулю:
- •Электроемкость уединенного проводника и конденсатора. Конденсаторы. Электроемкость плоского конденсатора. Соединения конденсаторов.
- •Энергия системы неподвижных точечных зарядов, заряженного проводника, конденсатора. Энергия электростатического поля. Объемная плотность энергии.
Силы и потенциальная энергия межмолекулярного взаимодействия. Особенности жидкого и твердого состояния.
Межмолекулярные взаимодействия, взаимодействия молекул между собой, не приводящее к разрыву или образованию новых химических связей. Межмолекулярные взаимодействия определяют отличие реальных газов от идеальных, существование жидкостей и молекулярных кристаллов. От межмолекулярных взаимодействий зависят многие структурные, спектральные, термодинамические, теплофизические и другие свойства веществ. Появление понятия межмолекулярные взаимодействия связано с именем Й. Д. Ван-дер-Ваальса, который для объяснения свойств реальных газов и жидкостей предложил в 1873 уравнение состояния, учитывающее межмолекулярные взаимодействия. Поэтому силы межмолекулярного взаимодействия часто называют ван-дер-ваальсовыми.
Виды межмолекулярных взаимодействий. Основу межмолекулярных взаимодействий составляют кулоновские силы взаимодействия между электронами и ядрами одной молекулы и ядрами и электронами другой. В экспериментально определяемых свойствах вещества проявляется усредненное взаимодействие, которое зависит от расстояния R между молекулами, их взаимной ориентации, строения и физических характеристик (дипольного момента, поляризуемости и др.). При больших R, значительно превосходящих линейные размеры l самих молекул, вследствие чего электронные оболочки молекул не перекрываются, силы межмолекулярного взаимодействия можно достаточно обоснованно подразделить на три вида - электростатические, поляризационные (индукционные) и дисперсионные. Электростатические силы иногда называют ориентационными, однако это неточно, поскольку взаимная ориентациямолекул может обусловливаться также и поляризационными силами, если молекулы анизотропны.
При малых расстояниях между молекулами (R ~ l) различать отдельные виды межмолекулярных взаимодействий можно лишь приближенно, при этом, помимо названных трех видов, выделяют еще два, связанные с перекрыванием электронных оболочек, - обменное взаимодействие и взаимодействия, обязанные переносу электронного заряда. Несмотря на некоторую условность, такое деление в каждом конкретном случае позволяет объяснять природу межмолекулярного взаимодействия и рассчитать его энергию.
Прежде всего следует еще раз подчеркнуть, что газ, жидкость и твердое тело представляют собой агрегатные состояния вещества и в этом смысле между ними нет непреодолимого различия: всякое вещество в зависимости от температуры и давления может находиться в любом из агрегатных состояний. Вместе с тем между жидким и твердым телами имеются существенные различия. Поскольку у твердых и жидких тел есть много общих свойств.
В твердых и жидких телах силы сцепления между молекулами (атомами, ионами) играют уже существенную роль, удерживая их на определенных расстояниях друг от друга. В этих телах средняя потенциальная энергия, обусловленная силами сцепления между молекулами, больше средней кинетической энергии теплового движения молекул (Wn> WK). Иначе говоря, в среднем кинетическая энергия молекул недостаточна для преодоления сил притяжения между ними.
Благодаря плотной «упаковке» молекул в жидкости они уже не совершают свободных пробегов, а как бы «толкутся» на месте (колеблются около некоторого положения равновесия). Лишь время от времени молекула вследствие благоприятной комбинации столкновений может перейти на новое место на расстояние, сравнимое с размером самой молекулы. Естественно, что диффузия в жидкостях протекает значительно медленнее, чем в газах.
В твердом теле частицы (молекулы, атомы, ионы) расположены в геометрически строго определенном порядке, образуя так называемую кристаллическую решетку. Частицы совершают колебательные движения около своих положений равновесия. Переходы частиц с места на место в твердом теле возможны, но весьма редки. Поэтому, хотя диффузия существует и в твердых телах, она протекает здесь еще медленнее, чем в жидкостях.