
- •Источники радиации природного и искусственного происхождения
- •Глобальные эффекты ядерных испытаний
- •Ядерная энергетика и промышленность
- •Классификация химических веществ по действию на организм человека и степени их стойкости.
- •3. Последствия радиоактивного загрязнения местности для рб
- •Устойчивость экономики в чс
- •Строительные материалы. Родон.
- •6 Понятие о ядерном реакторе и принципе его работы
- •Внутреннее и внешнее облучение организма человека.
- •8 Действие больших и малых доз радиации на организм человека
- •Фотоэффект и эффект Комптона.
- •10 Укрытие населения в защитных сооружениях.
- •2 Противорадиационные укрытия
- •3 Простейшие укрытия
- •Процессы, протекающие в активной зоне ядреного реактора
- •Причины аварии на Чернобольской аэс
- •Действие ионизирующих излучений на биологические объекты.
- •14 Характеристика очага ядерного взрыва
- •15 Характеристика очага биологического поражения
- •Защита человеческого организма от радиации
- •1.Защита временем
- •17 Чрезвычайные ситуации, характерные и наиболее вероятные для Республики Беларусь
- •Государственная программа по ликвидации катастрофы на Чернобыльской аэс.
- •19. Характеристика очага химического поражения
- •20 Нормы радиационной безопасности нрб-2000.
- •21 Предотвращение и уменьшение последствий чрезвычайных ситуаций
- •22. Основные способы защиты населения в чс
- •23. Опасность р/источников для человека и биосферы и их физическая природа
- •24. Спасательные и другие неотложные работы в очагах поражения
- •25, 26. Модель атома и элементарные частицы. Атомное ядро
- •27. Средства индивидуальной защиты и медицинской помощи
- •28. Радиоактивность. Закон радиоактивного распада
- •29. Риск – мера опасности. Источники опасности для человека
- •30. Активность р/активных веществ. Единицы активности.
- •31. Чс, вызванные выбросами сильнодействующих ядовитых веществ
- •32. Равновесие при радиоактивном распаде
- •33. Стихийные бедствия. Чс биологического характера
- •34. Естественная радиация
- •35. Масштабы и последствия аварии на чаэс
- •36.Реакция организма человека на радионуклиды техногенного происхождения
- •37. Методы и цели измерения р/излучения.
- •38. Хранение, учет, перевозка радиоактивных веществ. Ликвидация р/отходов.
- •39. Нормирование радиоактивного воздействия на организм человека.
- •43. Детектирование ионизирующих излучений.
- •44. Характеристика очага поражения при аварии на аэс. Очаг ядерного поражения
- •Воздействие избыточного давления на человека
- •45. Особо опасные инфекционные заболевания людей и животных.
- •46. Устойчивость работы хозяйственных объектов в чс.
- •47. Деление ядер урана. Ядерное топливо.
- •48. Деление урана и оружие массового поражения.
- •49. Факторы, влияющие на устойчивость работы хозяйственных объектов в военное время.
- •Правила поведения и действия населения в чс.
- •Основные виды излучения радиоактивных ядер и их характеристики.
- •Взаимодействие ядерного излучения с веществом.
- •1)Взаимодействие α- частиц с веществом.
- •2) Взаимодействие β частиц с веществом.
- •3)Взаимодействие γ-лучей, фотонов с веществом.
- •Организация обучения населения в системе го.
- •Учебный городок.
- •Натурный участок.
- •Учебные классы.
- •Основы радиационной дозиметрии.
- •Общая характеристика чс, их классификация.
- •Основные источники поступления р/нуклидов в организм.
- •Способы и средства защиты населения от ионизирующего излучения.
- •1.Защита временем
- •Обеззараживание загрязненных объектов.
- •Основные элементы ядерного реактора.
- •Оповещение населения о чс.
- •Йод и его значение для организма человека.
- •Основные источники поступления р/нуклидов в организм для населения Беларуси.
- •Дозы облучения.
- •Оказание первой медицинской (доврачебной) помощи.
- •Чс, которые могут возникнуть на территории рб.
- •Порядок действия населения по сигналам го при чс при оповещении о радиоактивном загрязнении.
- •Порядок действия населения по сигналам го при чс при оповещении о химическом загрязнении.
- •Порядок действия населения по сигналам го при чс при возникновении пожара и обнаружении очага ртутного загрязнения.
- •Что надо знать об эвакуации населения?
- •Места укрытия, порядок занятия защитных сооружений и поведение в них.
- •Доврачебная помощь при поражениях, травмах и отравлениях.
- •Что понимают под поражениями химическими и радиоактивными веществами.
- •Охарактеризовать способы хранения ахов на предприятиях и их опасность при чс.
- •Меры защиты населения при отсутствии времени на эвакуацию.
- •Характеристика мероприятий, направленных на выживание населения на загрязненных территориях р/нуклидами.
- •Дезактивация продуктов питания.
- •Химические и биологические способы защиты человека от радиации.
- •78. Реакция органов и систем человека на облучение.
- •79 Взаимодействие ионизирующих излучений на биологические объекты.
- •80. Формы бактериологических очагов: эпидемии, пандемии, эпизоотии, карантин и обсервации.
- •81. Дозы ионизирующих излучений и соотношение единиц: Грей-зиверт, Рентген-рад бэр
- •82. Понятия: авария, катастрофа, стихийное бедствие, опасности, риски, источники их возникновения, классификация по причинам и масштабам развития.
- •83 Радиометрический контроль загрязнения различных пищевых продуктов и строительных материалов, приборы контроля, сравнительный анализ показателей.
- •84 Спасательные работы в очаге поражения, их содержание, организация эвакуации из очага.
- •85. Цепная реакция деления тяжелых ядер, условия ее протекания. Методы получения радиоактивного топлива для аэс
- •86 Особенности предотвращения аварий в операторской работе, требования к отбору операторов.
- •87 Защитный эффект в результате проведения йодной профилактики и её роль.
- •88 Роль микроэлементов и ультрамикроэлементов в жизни человека.
- •89. Острая лучевая болезнь: причины, формы, стадии, исход, последствия через длительный период.
- •90. Содержание работы командира формирования при проведении СиДнр.
- •Источники радиации природного и искусственного происхождения.
47. Деление ядер урана. Ядерное топливо.
Деление атомного ядра - один из видов ядерных реакций. Он заключается в том, что тяжелое ядро под воздействием нейтронов делится на несколько более мелких ядер, которые называют осколками деления.
В общем случае реакцию деления, например, ядра урана-235 при облучении его нейтронами, можно представить следующим образом:
(235)U+n => (236)U =>X+Y+kn+E;
где E - выделившаяся энергия;
Xи Y- ядра - осколки деления;
К - число нейтронов (равное 2 или 3), высвободившихся в процессе деления;
С учетом того, что удельная энергия связи ядер средней массы примерно на 1 МэВ больше, чем у тяжелых ядер, из выражения (3.2) следует, что деление ядер урана должно сопровождаться выделением большого количества энергии. Оно составляет ~200 МэВ (3*10−11Дж) на один акт деления.
Испускаемые при делении ядер вторичные нейтроны могут вызвать новые акты деления, т.е. цепную реакцию деления, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции.
Если в среде, содержащей уран-235, разделилось одно ядро, то в среднем при этом высвободится 2 нейтрона, которые могут вызвать деление двух ядер. В результате образуется 4 нейтрона и т.д. После смены n-поколений в среде может быть 2nнейтронов, которые потенциально могут вызвать деление стольких же ядер. Например, для расщепления 2 г урана-235 требуется5*1021≈272 нейтронов, т.е. оно произойдет после смены 72 поколений. Время жизни одного поколения 10−7…10−8с, так что выделение энергии ~1011Джзаймет время τ=10−5…10−6c. Такая цепная реакция завершится взрывом колоссальной силы, который и происходит в атомной бомбе.
Однако такое представление о цепной реакции является идеализированным, так как в любой реальной системе возможен выход вторичных нейтронов из лавины вследствие следующих процессов: вылета нейтронов из зоны реакции через поверхность; захвата нейтронов ядрами примесей, продуктами реакции и т.д.; захвата нейтронов ядрами урана, которые, тем не менее, не приводят к реакции деления.
Для характеристики цепной реакции используется понятие коэффициента размножения нейтронов - k. Он равен отношению числа нейтронов в данном поколении к их числу в предыдущем поколении. Вторичные нейтроны имеют сравнительно широкий энергетический спектр в пределах от 0 до 100 МэВ, причем на один нейтрон в среднем приходится энергия около 2 МэВ. По области энергий нейтроны делятся на тепловые с энергией от 0,001 до 0,5 эВ, резонансные с энергией от 0,5 эВ до 10 кэВ и быстрые с энергией от 10 кэВ до 100 МэВ.
При рассмотрении цепной реакции деления необходимо учитывать, что ядра различных элементов с различной вероятностью захватывают нейтроны, имеющие одинаковую энергию. Например, тепловые нейтроны вызывают деление ядер урана-235, а быстрые нейтроны, кроме деления ядер урана-235 (но с меньшей вероятностью), могут вызвать деление урана-238. Резонансные нейтроны, хотя и хорошо поглощаются ядрами урана-238, не вызывают их деления, а приводят к ряду радиоактивных превращений исходного ядра, конечным этапом которых являются ядра плутония-239.
Необходимым условием для протекания цепной реакции деления является требование k>1. При k>1 реакция имеет взрывной характер. А использование реакции в мирных целях требует k≈1 и дополнительных условий по управлению протекания цепной реакции.
Ядерная цепная реакция может протекать при выполнении ряда условий:
1. Уран должен быть, по возможности, очищен от примесей и продуктов реакции, которые поглощают нейтроны.
2. В случае цепной реакции на быстрых нейтронах необходимо обогащение естественного урана изотопом урана-235. В природном уране уран-235 составляет 0,7%, а необходимое содержание урана – 235 ≈ 15%. 3. Для осуществления реакции на тепловых нейтронах необходимо избежать захвата нейтронов ураном-238 в резонансной области, где не вызывается деление ядер. Это достигается использованием замедлителей, которым нейтрон передает значительную долю энергии, скачком преодолевает резонансную область и превращается в тепловой нейтрон. Хорошим замедлителем является тяжелая вода D20 (двуокись дейтерия) и углерод С (в виде графита).
4. Необходимо понижение вероятности радиационного захвата нейтронов, которое достигается тем, что вместо однородной смеси урана и замедлителя (гомогенная система) применяются чередующиеся блоки этих веществ (гетерогенная система). При ее использовании, образовавшийся в уране быстрый нейтрон успевает уйти в замедлитель до достижения им резонансной энергии. Там он становится тепловым, после чего диффундирует обратно в уран, где вступает в цепную реакцию. В гомогенной системе цепная реакция в естественном уране может протекать только при использовании самого дорогого замедлителя - тяжелой воды. В гетерогенной системе она идет в том случае, когда замедлителем служит гораздо более дешевый графит.
5. Для осуществления цепной реакции наиболее выгодна система, форма которой близка к сферической. Для нее утечка нейтронов через поверхности будет минимальной.
6. Цепная реакция будет идти лишь в том случае, когда ядерного горючего достаточно много. Минимальная масса топлива, при которой еще протекает ядерная реакция, называется критической массой. Значение критической массы определяется геометрией физической системы, ее структурой и внешним окружением. Например, для сферы из чистого урана-235 критическая масса равна 47 кг. Это шар диаметром 17 см. Но если тот же уран прослоен тонкими полиэтиленовыми пленками и окружен бериллиевой оболочкой, то критическая масса снижается до 242 г (шар диаметром около 3 см.). Оболочка служит здесь отражателем нейтронов, направляющим их обратно в зону реакции.
Таким образом, применительно к ядерному реактору при значении коэффициента размножения k=1 реакция протекает стационарно (рабочий режим реактора). При k>1 интенсивность нарастает (режим разогрева реактора или взрыва бомбы). При k<1 реакция гаснет (режим выключения реактора или вообще отсутствие реакции).
Система при k=1 называется критической, при k>1 - надкритической, при k<1 - подкритической.
Цепную реакцию деления можно осуществить с использованием разных видов топлива и замедлителя:
1) естественного урана с тяжеловодным или графитовым замедлителем;
2) слабообогащенного урана с любым замедлителем;
3) сильнообогащенного урана или искусственного ядерного топлива
(плутония) без замедлителя (цепная реакция на быстрых нейтронах).