Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Matlog_exam_answer_27-35.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
41.78 Кб
Скачать

34. Transfinite Induction. Well-ordering property. Ordinals.

Let P(α) be a property defined for all ordinals α. Suppose that whenever P(β) is true for all β < α, then P(α) is also true. Then transfinite induction tells us that P is true for all ordinals.

Usually the proof is broken down into three cases:

Zero case: Prove that P(0) is true.

Successor case: Prove that for any successor ordinal α+1, P(α+1) follows from P(α) (and, if necessary, P(β) for all β < α).

Limit case: Prove that for any limit ordinal λ, P(λ) follows from [P(β) for all β < λ].

well-ordering property: Every nonempty subset of the set of positive integers has a least element.

2)The well-ordering property states, that every nonempty subset of the Natural Numbers has a least member.

∀S ≠ ∅ ⊆ N ∃x ∈ S ∀z ∈ S (x ≤ z)

An ordinal is a set of all previous ordinals.

35. Definition of an ordinal. Examples. Limit and non-limit ordinals. Properties of ordinal. Difinition of w0 and w1.

An ordinal is a set of all previous ordinals.

Ex: ᴓ, {ᴓ}, {ᴓ,{ᴓ}}, {ᴓ{ᴓ},{ᴓ{ᴓ}}}

n+1=nU{n}

n+1-is a non-limit ordinal. – is a union of all finite ordinals, w0 not= for any ordinal . w0-is limit-ordinal.

w0+1=w0U{w0} is non-limit. w0+2,… w0+n

w0+w0=w0*2 is limit.

w0*3, w0*n,…w0*w0 are limit ordinal.

w1 is the unions of all countable ordinals.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]