
- •Оглавление
- •Билет №1
- •Технологии освоения нефтедобывающих скважин.
- •2. Функции системы сбора и подготовки скважинной продукции.
- •3. Причины обводнения нефтедобывающих скважин.
- •Билет №2
- •Способы регулирования подачи и напора уэцн.
- •2. Основные элементы системы сбора скважинной продукции нефтяных месторождений.
- •3. Назначение системы поддержания пластового давления (ппд).
- •Билет №3
- •Способы регулирования подачи ушсн.
- •2. Схема двухтрубной системы сбора нефти.
- •3. Коэффициенты обводненности и водонасыщенности.
- •Билет №4
- •Технология проведения и назначение динамометрирование шсну.
- •2. Схема однотрубной системы сбора нефти.
- •3. Влияние анизотропии коллектора на образование конусов подошвенной воды.
- •Билет №5
- •1. Причины снижения загрузки погружного электродвигателя уэцн.
- •2. Система сбора и транспорта нефти в горной местности.
- •Область применения нефтедобывающих скважин с горизонтальными окончаниями
- •Билет №6
- •1. Методы подбора уэцн для нефтяных скважин.
- •2. Схема системы сбора нефти, газа и воды на морских месторождениях, расположенных вблизи от берега.
- •3. Основные законы фильтрации жидкости в пористой среде.
- •Билет №7
- •2. Схема системы сбора нефти, газа и воды на морских месторождениях, расположенных вдали от берега.
- •3. Особенности разработки трещиновато-поровых коллекторов.
- •Билет №8
- •Технологии предупреждения и удаления аспо в скважинах, оборудованных ушсн.
- •2. Принципиальная схема Спутника-а.
- •3. Площадные системы заводнения.
- •Билет №9
- •1. Область применения винтовых установок уэвн и ушвн.
- •Принципиальная схема Спутника-в.
- •Виды и назначение рядных систем
- •Билет №10
- •Методы борьбы с отложениями аспо в скважинах, оборудованных уэцн.
- •2. Классификация трубопроводов.
- •3. Основные виды внутриконтурного заводнения.
- •Билет №11
- •1. Показатели использования фонда скважин.
- •2. Определение потерь напора на трение для всех режимов течения жидкостей.
- •3. Источники пластовой энергии.
- •Билет №12
- •1. Виды гтм, применяемых на нагнетательных скважинах.
- •2. Графоаналитический метод определения пропускной способности трубопроводов.
- •3. Режимы эксплуатации залежей.
- •Билет №13
- •1. Виды несовершенства скважин и его учет.
- •2. Графоаналитический метод определения диаметра трубопровода.
- •3. Эксплуатация залежи в режиме растворенного газа.
- •Билет №14
- •1. Технология исследования нагнетательных скважин.
- •2. Методы определения оптимального диаметра трубопровода.
- •3. Разработка нефтяных залежей с газовой шапкой.
- •Билет №15
- •1. Методы снижения пусковых давлений газлифтных скважин.
- •2. Схемы газосборных коллекторов.
- •3. Виды неоднородности коллекторов.
- •Билет №16
- •Параметры, контролируемые при выводе скважины на режим.
- •2. Состав и структура солеотложений в системе сбора скважинной продукции.
- •3. Зоны разделы фаз в нефтегазовых залежах с краевыми водами.
- •Билет №17
- •Особенности насосной добычи нефтей с большим газосодержанием.
- •2. Методы удаления солеотложений в системе сбора скважинной продукции.
- •3. Методы определения кин
- •Билет №18
- •1. Коэффициент подачи ушсн.
- •2. Состав и классификация аспо в системе сбора скважинной продукции.
- •3. Критерии выбора объекта для проведения грп.
- •Билет №19
- •1. Газлифтная эксплуатация скважин.
- •2. Основные факторы образования аспо в системе сбора скважинной продукции.
- •3. Технологии регулирования разработки нефтяных месторождений.
- •Билет №20
- •1. Виды и технологии гидродинамических исследований скважин с уэцн.
- •2. Метода предотвращения и борьбы с аспо в системе сбора скважинной продукции.
- •3. Технология и назначение форсированных отборов из нефтяных пластов.
- •Билет №21
- •Коэффициент подачи ушсн.
- •2. Виды коррозии в системе сбора скважинной продукции.
- •3. Назначение и область применения потокоотклоняющих технологий (применение вус, гос и ос).
- •Билет №22
- •1. Оптимизация режимов работы уэцн.
- •2. Факторы коррозионного воздействия на трубопровод.
- •Минерализация воды
- •3. Методика определения технологической эффективности гтм.
- •Билет №23
- •1. Недостатки газлифтной эксплуатации.
- •2. Защита трубопроводов от внутренней коррозии.
- •3. Особенности разработки нефтяных месторождений с недонасыщенными коллекторами.
- •Билет №24
- •1. Достоинства газлифтной эксплуатации.
- •2. Защита трубопроводов от внешней коррозии. Схему заменить
- •3. Технология и область применения барьерного заводнения.
- •Билет №25
- •1. Методы регулирования работы скважин с шсну.
- •2. Основные факторы, вызывающие пульсацию и влияющие на их величину и частоту.
- •3. Особенности геологического строения нефтегазовых залежей (месторождений).
- •Билет №26
- •1. Назначение и технологии проведения кислотных обработок добывающих скважин.
- •2. Схема предварительного разгазирования нефти. Понятие сепарации и ступени сепарации.
- •3. Классификация месторождений по величине извлекаемых запасов.
- •Билет №27
- •1. Значение и технология гди.
- •2. Назначение сепараторов.
- •3. Технологии разработки многопластовых месторождений.
- •Билет №28
- •1. Технологии управления продуктивностью скважин.
- •Назначение методов и их общая характеристика
- •2. Классификация сепараторов.
- •2. По Коротаеву (отношению содержаний изо-бутана I-с4н10 к нормальному бутану n-c4h10)
- •C) по методу главных компонент
- •Билет №29
- •1. Методы обоснования способов эксплуатации скважин.
- •2. Определение эффективности работы сепаратора.
- •3. Технологии интенсификации разработки нефтяных месторождений.
- •Билет №30
- •1. Технологии освоения нагнетательных скважин.
- •2. Конструкция горизонтального сепаратора с упог.
- •3. Технологии регулирования разработки нефтяных месторождений.
- •Билет №31
- •1. Технологии вторичного вскрытия пластов.
- •Конструкция гидроциклонного сепаратора.
- •Категории запасов нефти
- •Билет №32
- •1. Методы интерпретации квд и определяемые по ним параметры. Исследование скважин при неустановившихся режимах
- •2. Конструкция совмещенной установки разделения скважиной продукции.
- •3. Характеристика и методы определения стадий разработки нефтяных месторождений.
- •Билет №33
- •1. Теплофизические методы воздействия на пзп. Термокислотные обработки
- •Тепловая обработка призабойной зоны скважины (пзс)
- •Термогазохимическое воздействие на призабойную зону скважины
- •2. Методика расчета количества газа, выделившегося по ступеням сепарации.
- •3. Классификация методов увеличения нефтеотдачи.
- •Билет №34
- •1. Технология приобщения пластов.
- •2. Скорость осаждения при ламинарном режиме осаждения.
- •3. Последовательность разработки и назначение проектных документов на разработку нефтяных месторождений.
- •Билет №35
- •1. Назначение, технология проведения и интерпретация результатов гидропрослушивания.
- •2. Схема глобул воды в нефти. Типы эмульсий.
- •3. Назначение и технология проведения трассерных исследований нефтяных скважин.
- •Билет № 36
- •Схемы оборудования устья добывающих скважин.
- •Классификация эмульсий в зависимости от плотности сред и содержания парафинов, смол и асфальтенов.
- •Методы подсчета запасов нефти и растворенного газа.
- •Билет №37
- •Причины разрушения прискважинной зоны пласта при добычи нефти.
- •Технологии дегазации нефти.
- •Особенности разработки нефтяных месторождений на завершающей стадии. Билет №38
- •Основные причины выхода из строя уэцн и методы борьбы с ними.
- •Факторы, влияющие на образование эмульсий.
- •3. Технологии совместной разработки многопластовых месторождений.
- •Билет №39
- •Виды и условия фонтанирования скважин.
- •Предотвращение образования стойких эмульсий.
- •Особенности разработки низкопроницаемых и неоднородных коллекторов. Билет №40
- •Мероприятия по предупреждению образования солеотложений при эксплуатации скважин.
- •Основные методы разрушение эмульсий.
- •3. Технологии выработки остаточных запасов нефти.
- •Билет №41
- •Назначение мини-грп.
- •Технологии применения пав в качестве деэмульгаторов.
- •Задачи геофизических методов контроля за разработкой нефтяных месторождений.
- •Билет №42
- •Этапы проведения грп.
- •Внутритрубная деэмульсация нефти.
- •Технологии разработки месторождений при анпд и авпд.
- •Классификация плунжерных глубинных насосов.
- •Принципиальная схема гравитационного осаждения.
- •Методы контроля за разработкой нефтяных месторождений.
- •1).Задачи промысловых методов.
- •2).Задачи геофизических методов контроля:
- •3).Задачи гидродинамических методов контроля:
- •4). Задачи физико-химических методов:
- •Билет №44
- •Основные способы заканчивания скважин.
- •Установка термической подготовки нефти. Схему заменить
- •Особенности разработки месторождений высоковязких нефтей.
- •Билет №45
- •Влияние газа на работу шсну и методы его снижения.
- •Установка комплексной подготовки нефти. Схему заменить
- •Основные теории фильтрации жидкости в пористой среде. Линейная фильтрация нефти и газа в пористой среде
- •Радиальная фильтрация нефти и газа в пористой среде
- •Оценка проницаемости пласта, состоящего из нескольких пропластков различной проницаемости
- •Билет №46
- •Назначение и технология проведения термометрических исследований скважин.
- •Принципиальные схемы отстойных аппаратов различного типа.
- •Категории скважин.
- •Периодическая эксплуатация уэцн.
- •Методы определения исходных параметров залежи для гидродинамических расчетов. Билет №48
- •Ликвидация скважин.
- •Билет №49
- •Билет №50
- •2. Схемы совмещенных аппаратов. Схему заменить
- •3. Прогнозирование показателей разработки по фактическим данным с помощью характеристик вытеснения.
- •Билет №51
- •1. Схема уэцн и назначение узлов.
- •2. Схема расположения оборудования на наземном вертикальном цилиндрическом резервуаре.
- •3. Постоянно-действующие гидродинамические модели.
- •Билет №52
- •1. Причины и технологии консервации скважин.
- •2. Схема работы гидравлического предохранительного клапана и устройство дыхательного клапана.
- •3. Правовые условия разработки нефтяных месторождений. Билет №53
- •Классификация методов интенсификации притока.
- •2. Огневой предохранитель. Устройство и принцип действия.
- •3. Основные типы нефтегазовых залежей.
- •Билет №54
- •1. Осложнения, возникающие при работе скважин, оборудованных шсну.
- •2. Методы снижения потерь углеводородов при испарении нефти в резервуарах.
- •3. Функция Бакли-Леверетта. Расчет непоршневого вытеснения нефти водой.
- •Билет №55
- •Причины снижения производительности уэцн.
- •Типы моделей пластов (объектов разработки).
- •Билет №56
- •Фонтанная эксплуатация нефтяных скважин.
- •Назначение установок подготовки воды упсв.
- •Закачка в пласт водных растворов пав, полимеров, щелочей, кислот, мицеллярных растворов.
- •Билет №57
- •Системы защиты уэцн от солеотложений.
- •Термические методы увеличения нефтеотдачи.
- •Билет №58
- •Регулирование работы фонтанных скважин.
- •Методы подсчета запасов нефтяного месторождения.
- •Билет №59
- •1. Способы эксплуатации скважин на завершающей стадии разработки месторождений.
- •2. Схемы водозаборов.
- •3. Методы утилизации попутного нефтяного газа. Билет №60
- •1. Движение газожидкостных смесей в вертикальных трубах.
- •2. Схема улавливания легких фракций углеводородов.
- •3. Особенности разработки нефтяных оторочек.
Основные теории фильтрации жидкости в пористой среде. Линейная фильтрация нефти и газа в пористой среде
Для оценки проницаемости горных пород обычно пользуются линейным законом фильтрации Дарси. Дарси в 1856 году, изучая течение воды через песчаный фильтр (рис. 1.6), установил зависимость скорости фильтрации жидкости от градиента давления.
Рис. 1.6. Схема экспериментальной установки Дарси для изучения течения воды через песок
Согласно уравнению Дарси, скорость фильтрации воды в пористой среде пропорциональна градиенту давления:
,
(1.7)
где Q – объёмная скорость воды;
v – линейная скорость воды;
F – площадь сечения, F = d2/4;
L – длина фильтра;
k – коэффициент пропорциональности .
Нефть – неидеальная система (компоненты нефти взаимодействуют между собой), поэтому линейный закон фильтрации для нефти, содержит вязкость, учитывающую взаимодействие компонентов внутри нефтяной системы:
, (1.8)
где – вязкость нефти.
В этом уравнении способность породы пропускать жидкости и газы характеризуется коэффициентом пропорциональности k (1.7), который называется коэффициентом проницаемости (kпр).
Размерность коэффициента проницаемости (система СИ) вытекает из соотношения:
, (1.9)
Размерность параметров уравнения Дарси в разных системах единиц
Таблица 1.2
Проницаемостью в 1 м2 называется проницаемость пористой среды при фильтрации через образец площадью 1 м2 длиной 1 м и при перепаде давления 1 Па, при которой расход жидкости вязкостью 1 Пас составляет 1 м3.
Пористая среда имеет проницаемость 1 Дарси, если при однофазной фильтрации жидкости вязкостью 1 спз (спуаз) при ламинарном режиме фильтрации через сечение образца площадью 1 см2 и перепаде давления 1 атм., расход жидкости на 1 см длины породы составляет 1 см3/сек.
Физический смысл размерности проницаемости – это площадь сечения каналов пористой среды, через которые идет фильтрация.
Существует несколько типов каналов:
субкапиллярные;
капиллярные;
трещины;
разрывы.
Приведённые выше уравнениясправедливы при условии движения несжимаемой жидкости по линейному закону Дарси.
Радиальная фильтрация нефти и газа в пористой среде
Процесс притока пластовых флюидов из пласта в скважину описывается моделью радиальной фильтрации. В этом случае образец породы представляется в виде цилиндрического кольца с проводящими каналами в осевом направлении (рис. 1.7).
Рис. 1.7. Схема радиального притока жидкости в скважину
Площадь боковой поверхности цилиндра: F=2rh, таким образом уравнение Дарси для радиальной фильтрации будет иметь следующий вид:
.
(1.16)
Отсюда, дебит при радиальной фильтрации жидкости:
.
(1.17)
Таким образом, коэффициент проницаемости при радиальной фильтрации:
. (1.18)
Оценка проницаемости пласта, состоящего из нескольких пропластков различной проницаемости
Пласт состоит, как правило, из отдельных пропластков, поэтому общая проницаемость пласта (kпр) оценивается с учетом проницаемости пропластков и направления фильтрации.
Рис. 1.8. Линейная фильтрация в пласте, состоящем из нескольких изолированных пропластков различной мощности и проницаемости.
При линейной фильтрации жидкости в пласте, состоящем из нескольких изолированных пропластков различной мощности и проницаемости (рис. 1.8), средняя проницаемость пласта рассчитывается следующим образом:
, (1.19)
где hi – мощность i-го пропластка;
ki – проницаемость i-го пропластка.
Рис. 1.9. Линейная фильтрация через пласт, имеющий несколько последовательно расположенных зон различной проницаемости.
При линейной фильтрации жидкости через пласт, имеющий несколько последовательно расположенных зон различной проницаемости (рис. 1.9), коэффициент проницаемости пласта рассчитывается следующим образом:
, (1.20)
где Li – длина i-го пропластка;
ki – проницаемость i-го пропластка.
Рис. 1.10. Радиальная фильтрация через пласт, имеющий несколько концентрически расположенных зон различной проницаемости.
При радиальной фильтрации жидкости через пласт, имеющий несколько концентрически расположенных зон различной проницаемости (рис. 1.10), средняя проницаемость пласта оценивается следующим образом:
(1.21)
где rk – радиус контура;
rс – радиус скважины;
ri – радиус i-го пропластка;
ki – проницаемость i-го пропластка.