Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТФКП жауаптар.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
938.73 Кб
Скачать

С мағынасында с-да жататын шенелген жиындар. Мағынасында -да жататын жиынның шенелуі. С-дағы және -дағы облыстар. Байланыстық және сызықтық байланыстық.

А н ы қ т а м а. Жазықтықтағы нүктелердің D жиыны ашық деп аталады, егер нүктелерінің барлығы D жиынының ішкі нүктелері болса.

Мысалы, сақинасы ашық жиын.

А н ы қ т а м а. Ашық D жиыны облыс деп аталады, егер ол байланысты болса, яғни кез келген нүктелерін толығымен D –да жататын сызығымен жалғауға болса.

Мысалы, жиыны облыс.

Екі дөңгелек и нүктелерінен тұратын D жиыны ашық, бірақ байланысты емес. Мысалы, осы шеңберлер ценрі болатын -1 және +1 нүктелерін барлық нүктелері D да жататын, қисығымен қоса алмаймыз.

А н ы қ т а м а. Ашық жиынның барлық шектік нүктелерінің жиынтығы оның шекарасы деп аталады.

Мысалы, сақинасының шекарасы и шеңберлер болады. Тұйық сақина теңсіздіктерімен анықталады.

А н ы қ т а м а. Жазықтықтың D нүктелер жиыны шенелген деп аталады, егер болатындай дөңгелегі бар болса.

Мысалы, дөңгелегі шенелген жиын. Себебі, болғанда болады. Жоғарғы жарты жазықтық шенелмеген жиын.

С жазықтығындағы облыстар бірбайланысты және көпбайланысты болып бөлінеді.

А н ы қ т а м а. облысы бірбайланысты деп аталады, егер осы облыста жатқан кез келген тұйық (үзіліссіз) қисықты, осы облыстан шықпай бір нүктеге сығымдауға болса.

Кері жағдайда облысы көпбайланысты деп аталады.

Егер D-ның шекарасы өзара қиылыспайтын қисықтардан тұрса, ондай D облысы -байланысты деп аталады. Ол көпбайланысты болып табылады.

Мысалы, С жазықтығындағы дөңгелек, жарты жазықтық бірбайланысты облыстар, ал сақинасы екібайланысты.

10.Функцияның анықтамасы. Өзара бірмәнді сәйкестік (бірбеттік функциялар). Комплекс айнымалы комплекс мәнді функцияның берілуі екі нықты айнымалы нақты мәнді функциялардың берілуімен мәндестігі. Функцияның геометриялық бейнелеулерінің тәсілдері (функцияның графигі R2*R2=R4 жататын жиын болады).

Е жиынының әрбір элементіне Ғ жиынының бір элементіне сәйкес келетін ережені функция деп атаймыз. Егер мүмкін мәндер жиынтығынан алынған х-тің әрбір мәніне айнымалы у-тің белгілі бір мәні сәйкес келсе, онда у айнымалы шамасы х айнымалы шамасының функциясы деп аталады. Мұндай тәуелділік у=f(х) түрінде жазылады. Мұндағы х-ті тәуелсіз айнымалы (кейде аргумент) деп, ал оның өзгеру облысы (жиыны) у-тің анықталу облысы деп аталады. х-тің өзгеруіне байланысты айнымалы у-тің қабылдайтын мәндерінің жиынын у функциясының өзгеру облысы деп атайды. Функцияның жоғарыда берілген анықтамасында назар аударатын екі жағдай бар: біріншісі — аргумент х-тің өзгеру облысын көрсету, екіншісі — х пен у мәндерінің арасындағы сәйкестік ережені немесе заңды тағайындау. Егер х-тің бір мәніне у-тің бір ғана мәні сәйкес келсе, онда у-ті х-тің бір мәнді Функциясы деп, ал егер х-тің бір мәніне у-тің бірнеше мәні сәйкес келсе, онда у-ті х-тің көп мәнді Функциясы деп атайды. Айнымалы шамалар (х пен у) мәндерінің арасындағы сәйкестік ережені немесе заңды функциялық тәуелділік дейді. Функция көбінесе аналитикалық тәсіл немесе формула  арқылы, кейде графиктік және таблицалық (дәл не жуық формулалармен есептелген) тәсілдерімен де беріледі. Ал , комплекс айнымалының функциясы деп комплекс санды D көпшілігінің комплекс санды G көпшілігіндегі f кескінін ( бейнесін) айтады.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]