
- •1. Основные функции управления.
- •2. Основные задачи управления деятельности предприятия.
- •3. Составляющие и структура автоматизированных систем управления.
- •4. Тенденции развития автоматизированных систем управления.
- •5. Организация узла системы управления на рабочем месте специалиста.
- •6. Основные режимы работы и эксплуатации системы управления, на базе взаимодействия пользователя и компьютера
- •5.1. Монопольный режим.
- •5.2. Мультипрограммный режим.
- •5.3. Пакетный режим.
- •5.4. Режим разделения времени.
- •5.5. Режим реального времени.
- •7. Критерии эффективности системы управления.
- •8. Основные свойства автоматизированных систем управления
- •9.Классификация автоматизированных систем управления
- •10. Обобщенные параметры автоматизированных систем управления. Из правил применения оборудования автоматизированных систем управления и мониторинга сетей электросвязи (асум скк)
- •11. Процессы внутримашинной циркуляции информации в системе управления.
- •12. Состав и архитектура программного обеспечения рабочего места специалиста
- •13. Модель взаимодействия компьютеров в сети.
- •Модель iso/osi
- •14. Виды топологий распределенных систем управления.
- •15. Характеристики каналов связи.
- •Характеристики
- •Помехозащищённость
- •Объём канала
- •Классификация
- •Модель канала с межсимвольной интерференцией и аддитивным шумом
- •Модели дискретных каналов связи
- •Модели дискретно-непрерывных каналов связи
- •16. Использование коммутационной сети в управлении.
- •17. Организация сложных связей в глобальных сетях.
- •18. Основные возможности современных бухгалтерских программ.
- •19. Этапы конфигурации системы в 1с.
- •1.2. Объекты конфигурации
- •1.3. Режимы запуска программы
- •1.4. Создание новой информационной базы
- •20. Редактирование констант и справочников в 1с.
- •21. Работа с документами и журналами в 1с.
- •22. План счетов и операции в нем.
- •23. Виды расчетов.
- •24. Автоматизация по видам учета в 1с.
- •25. Задание и использование типовых операций в 1с.
- •24. Состав технической документации для проектирования системы управления.
- •25. Содержание и документы предпроектного обследования.
- •26. Использование систем классификации и кодирования.
- •27. Метод структурного проектирования систем управления.
- •28. Работа системы управления на каждом этапе жизненного цикла.
- •29. Case – технологии при разработке автоматизированных систем управления.
- •30. Модели проектирования жизненного цикла системы управления.
- •31. Общие требования к методологии разработки.
- •32. Структурный поход к проектированию системы управления.
- •Принципы структурного анализа
- •Средства структурного анализа
- •33. Построение иерархических диаграмм процесса управления.
- •34. Типы связей между объектами и функциями.
- •35. Использование внешних связей при проектировании.
- •36. Состав логической и физической модели rationalrose.
- •37. Создание модели классов и связи с другими классами и объектами.
- •Реализация
- •38. Диаграммы топологии, состояния и прецедентов в rationalrose. Диаграммы прецедентов (Use case diagram)
- •Диаграммы топологии (Deployment diagram)
- •Диаграммы состояний (State Maсhine diagram)
- •39. Диаграммы активности, взаимодействия и последовательности действий. Диаграммы активности (Activity diagram)
- •Диаграммы взаимодействия (Interaction diagram)
- •Диаграммы последовательностей действий (Sequence diagram)
- •40. Обобщенная схема функционирования системы управления. Обобщенная структурная схема сау
- •41. Модели системы управления.
- •По цели управления
- •Системы автоматического регулирования
- •Системы экстремального регулирования
- •Характеристика сау
- •Примеры систем автоматического управления
- •42. Состав и архитектура программного обеспечения рабочего места специалиста. Арм специалистов
- •43. Системная стратегия вмешательства.
- •44. Показатели оценки структуры.
- •45. Оценка эффективности функционирования структуры предприятия с горизонтальной интеграцией.
- •46. Оценка эффективности функционирования структуры предприятия с вертикальной интеграцией.
- •Три типа
- •Вертикальная интеграция назад
- •Вертикальная интеграция вперёд
- •Сбалансированная вертикальная интеграция
- •47. Оценка устойчивость структуры.
- •Структура, устойчивая по ресурсам
- •48. Понятие и состав производственной программы.
- •49. Расчет производственной мощности.
- •50. Определение времени возможных простоев.
- •51. Показатели контроля выполнения производственной программы.
- •52. Факторы роста фондоотдачи.
- •53. Анализ объема производства.
- •54. Расчет влияния структурных сдвигов.
- •55. Анализ внутрипроизводственных резервов роста объема производства.
- •56. Увеличение объема за счет оптимизации использования оборудования и сырья.
- •57. Анализ безубыточности производства.
- •58. Использование системы MathCad для решения уравнений.
- •59. Использование системы mathcad для решения систем уравнений.
- •60. Сравнение эффективности структур с вертикальной и горизонтальной интеграцией в mathcad.
Классификация
Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.
По типу среды распространения каналы связи делятся на проводные, акустические, оптические, инфракрасные и радиоканалы.
Каналы связи также классифицируют на:
непрерывные (на входе и выходе канала - непрерывные сигналы),
дискретные или цифровые (на входе и выходе канала - дискретные сигналы),
непрерывно-дискретные (на входе канала - непрерывные сигналы, а на выходе - дискретные сигналы),
дискретно-непрерывные (на входе канала - дискретные сигналы, а на выходе - непрерывные сигналы).
Каналы могут быть как линейными и нелинейными, временными и пространственно-временными. Возможна классификация каналов связи по диапазону частот.
Модели канала связи
Канал
связи описывается математической
моделью, задание которой сводится к
определению математических моделей
выходного и входного
и
,
а также установлению связи между ними,
характеризующейся оператором
,
т.е.
.
По типу замирания сигнала модели канала связи делятся на гауссовские, релеевские, райссовские и с замираниями, моделируемые с помощью распределения Накагами.
Модели непрерывных каналов
Модели непрерывных каналов можно классифицировать на модель канала с аддитивным гауссовским шумом, модель канала с неопределенной фазой сигнала и аддитивным шумом и модель канала с межсимвольной интерференцией и аддитивным шумом.
Модель идеального канала
Модель идеального канала используется тогда, когда можно пренебречь наличием помех. При использовании этой модели выходной сигнал является детерминированным, т.е.
где γ – константа, определяющая коэффициент передачи, τ – постоянная задержка.
Модель канала с неопределённой фазой сигнала и аддитивным шумом
Модель
канала с неопределённой фазой
сигнала и
аддитивным шумом отличается от модели
идеального канала тем, что
является
случайной
величиной.
Например, если входной сигнал
является
узкополосным,
то сигнал
на
выходе канала с неопределённой фазой
сигнала и аддитивным шумом определяется
следующим образом:
,
где учтено, что входной сигнал может быть представлен в виде:
,
где
-
преобразование
Гильберта,
-
случайная фаза, распределение которой
считается обычно равномерным на интервале
.
Модель канала с межсимвольной интерференцией и аддитивным шумом
Модель канала с межсимвольной интерференцией и аддитивным шумом учитывает появление рассеяния сигнала во времени из-за нелинейности фазо-частотной характеристики канала и ограниченности его полосы пропускания, т.е. например, при передаче дискретных сообщений через канал на значение выходного сигнала будут влиять отклики канала не только на переданный символ, но и на более ранние или более поздние символы. В радиоканалах на возникновение межсимвольной интерференции влияет многолучёвое распространение радиоволн.