
- •Рецензенти:
- •Передмова
- •Розділ і висловлення і операції над ними. Предикати § 1. Висловлення і операції над ними. Елементи математичної логіки
- •1. Вступ
- •2. Висловлення. Прості і складені висловлення
- •Предикати (висловлювальні форми)
- •Квантори
- •§ 2. Структура і види теорем
- •1. Структура теореми
- •2. Види теорем
- •3. Найпростіші схеми правильних міркувань
- •§ 3. Математичні поняття. Особливості математичних понять. Об'єм і зміст поняття. Означення понять. Структура означення понять через рід і видову відмінність
- •1. Поняття як форма мислення. Особливості математичних понять
- •2.Зміст і обсяг поняття, відношення між ними
- •Способи означення математичних понять
- •4. Вимоги до логічно правильних означень понять
- •5. Приклади математичних понять, які розглядаються в початковому курсі математики
- •Питання для самоконтролю
- •Система вправ
- •Розділ іі множини, операції над ними. Відношення § 4. Множини, операції над ними
- •Поняття множини і елемента множини. Порожня множина. Способи задання множин
- •Підмножина. Рівні множини. Зображення множин і зв’язків між ними за допомогою кругів Ейлера
- •Числові множини. Запис числових проміжків
- •Переріз і об’єднання множин. Закони цих операцій. Доповнення підмножини
- •Декартів добуток двох множин. Зображення декартового добутку двох числових множин на координатній площині
- •Властивості декартового добутку:
- •6. Поняття розбиття множини на підмножини, що попарно не перетинаються. Класифікація понять. Приклади класифікацій
- •§ 5. Відношення та відповідність
- •Поняття відношення. Граф відношення
- •Способи задання відношень
- •Властивості відношень
- •Відношення еквівалентності
- •Відношення порядку
- •Поняття відповідності
- •Способи задання відповідностей
- •Відповідність, обернена даній
- •Взаємно однозначні відповідності
- •Рівнопотужні множини
- •Питання для самоконтролю
- •Система вправ
- •Коротка історія розвитку поняття числа
- •Визначення натурального числа і нуля
- •Теоретико-множинний зміст кількісного натурального числа і нуля
- •Порівняння натуральних чисел
- •Властивості множини цілих невід’ємних чисел
- •Тема. Додавання цілих невід’ємних чисел
- •Теоретико-множинний смисл суми двох цілих невід’ємних чисел
- •Існування суми, її єдиність
- •Сума декількох доданків
- •Закони додавання
- •Тема. Віднімання цілих невід’ємних чисел
- •Теоретико-множинний смисл різниці двох цілих невід’ємних чисел
- •Означення різниці через суму. Зв’язок дії віднімання з дією додавання
- •Умови існування різниці, її єдиність
- •Правила віднімання
- •Відношення «більше на», «менше на»
- •Тема. Текстова задача. Способи розв’язування текстових задач. Прийоми пошуку плану розв’язування текстових задач, способи запису і перевірки. Прості текстові задачі на додавання і віднімання
- •Тема. Множення цілих невід’ємних чисел
- •1. Визначення добутку двох цілих невід’ємних чисел як числа елементів декартового добутку двох скінченних множин
- •2. Визначення добутку цілих невід’ємних чисел через суму. Операція множення цілих невід’ємних чисел
- •3. Визначення добутку декількох множників
- •Існування добутку, його єдиність
- •5.Закони множення: комутативний, асоціативний, дистрибутивний
- •Тема. Ділення на множині цілих невід’ємних чисел
- •2. Зв’язок ділення з множенням
- •3. Існування частки, її єдиність
- •4. Правила ділення
- •1. Правило ділення суми на число.
- •6. Ділення цілого невід’ємного числа на натуральне з остачею
- •Тема. Прості задачі на множення та ділення
- •V. Задачі на знаходження невідомого компонента арифметичної дії:
- •§7. Десяткова система числення
- •1. Десяткова система числення
- •Порівняння чисел у десятковій системі числення:
- •2. Додавання і віднімання багатоцифрових чисел в десятковій системі числення багатоцифрових чисел Алгоритм додавання цілих невід’ємних чисел у десятковій системі числення
- •Віднімання цілих невід’ємних чисел у десятковій системі числення
- •3. Множення і ділення багатоцифрових чисел в десятковій системі числення багатоцифрових чисел
- •§ 8. Подільність цілих невід’ємних чисел
- •1. Відношення подільності на множині натуральних чисел, його властивості
- •Рефлексивність.
- •Антисиметричність.
- •Транзитивність.
- •2. Теореми про подільність суми, різниці, добутку
- •3. Ознаки подільності на 2 і 5, 4 і 25, 3 і 9, на складені числа
- •4. Найбільший спільний дільник і найменше спільне кратне натуральних чисел, способи їх знаходження
- •Способи знаходження найбільшого спільного дільника і найменшого спільного кратного
- •§ 9. Позиційні і непозиційні системи числення
- •1. Позиційні і непозиційні системи числення
- •2. Дії над числами в позиційних системах числення, відмінних від десяткової
- •Питання для самоконтролю
- •Система вправ
- •Розділ IV раціональні і дійсні числа § 10. Раціональні числа. Дії над ними та їх властивості
- •Поняття про вимірювання відрізків. Розширення множини цілих невід’ємних чисел
- •Дроби та їх властивості
- •3. Визначення арифметичних дій над додатними раціональними числами
- •Закони додавання і множення
- •5. Упорядкованість множини додатних раціональних чисел
- •6. Запис додатних раціональних чисел у вигляді десяткових дробів
- •§ 11. Дійсні числа та дії над ними
- •1. Несумірні відрізки і ірраціональні числа. Невід’ємні дійсні числа
- •2. Арифметичні дії над дійсними невід’ємними числами. Їхні властивості
- •Від’ємні числа. Множина дійсних чисел
- •Питання для самоконтролю
- •Система вправ
- •Розділ V рівності і нерівності, рівняння. Функції § 12. Математичні вирази. Рівності і нерівності
- •Алфавіт математичної мови
- •Числові вирази. Значення числового виразу
- •Вирази зі змінною
- •Тотожні перетворення виразів
- •Числові рівності, властивості істинних числових рівностей
- •Числові нерівності, властивості істинних числових нерівностей
- •§ 13. Рівняння та їх властивості. Нерівності, що містять змінну
- •Рівняння з однією змінною
- •Рівносильність рівнянь
- •Нерівності з однією змінною
- •Рівносильність нерівностей
- •§ 14. Функції, графіки та їх властивості
- •Поняття функції. Графік функції
- •2. Лінійна функція
- •3. Пряма пропорційність
- •Обернена пропорційність
- •Функціональна пропедевтика в початковій школі
- •Іі етап
- •Питання для самоконтролю
- •Система вправ
- •Розділ VI величини та їх властивості § 15. Поняття величини та її вимірювання
- •Поняття вимірювання величин. Основні властивості числових значень додатніх скалярних величин
- •Величини, що вивчаються в курсі математики і – іv класів
- •§ 16. Довжина відрізка, її властивості і вимірювання
- •§ 17. Площа фігури, її властивості і вимірювання
- •Щоб обчислити площу прямокутника, треба визначити його довжину і ширину та знайти добуток цих чисел.
- •§ 18. Об’єм тіла, його властивості і вимірювання
- •§ 19. Маса тіла і її вимірювання
- •§ 20. Час та його вимірювання
- •§ 21. Вартість та залежність між величинами: ціна, кількість, вартість
- •Питання для самоконтролю
- •Система вправ
- •Точка, пряма, їх властивості
- •Властивості:
- •Властивості:
- •3.2. Означеня кута
- •Властивості вимірювання кутів:
- •Види кутів
- •4. Трикутники
- •5. Коло, круг
- •6.Многокутники
- •Властивості паралелограма:
- •Властивості квадрата:
- •Властивості ромба:
- •7. Многогранники і тіла обертання
- •Питання для самоконтролю
- •Система вправ
- •Література
- •Джерела інформації
Відповідність, обернена даній
Нехай дано множини: А={1,3,5,7}, В={2,6}. R – відповідність «більше» між елементами даних множин.
Тоді R = {(3;2), (5;2), (7;2), (7;6)}
Побудуємо граф відповідності R.
Замінимо
стрілки графа на обернені. Одержимо
граф відповідності
– «менше».
= {(2;3),
(2;5),
(2;7),
(6;7)}.
Означення. Нехай R – відповідність між елементами множин А і В. Відповідність між елементами множин В і А називається оберненою даній, якщо у х тоді і тільки тоді, коли хRу.
Відповідності R і називаються взаємно оберненими.
Побудуємо графіки даних відповідностей в одній системі координат.
Графіки прямої і оберненої відповідностей симетричні відносно бісектриси І та III координатних кутів.
У початковому навчанні математиці оберненим відповідностям приділяється значна увага. Учні повинні чітко усвідомити, що, якщо 5>3, то 3<5; якщо відрізок АВ коротший, ніж відрізок СD, то відрізок СD довший, ніж відрізок АВ. Особлива роль знання взаємозв’язків під час розв’язування текстових задач з відношеннями, заданими в непрямій формі.
Взаємно однозначні відповідності
Означення. Взаємно однозначними відповідностями називаються відповідності, якщо кожному елементу множини Х відповідає єдиний елемент множини Y, і кожний елемент множини Y відповідає єдиному елементу множини Х.
У початковій школі поняття взаємно однозначної відповідності використовується неявно: на даному понятті будується лічба предметів та їх порівняння.
Наприклад. Як пояснити дітям, що 4 = 4 ?
Для пояснення беруть чотири червоних квадрата та чотири зелених трикутника і кожному червоному квадрату ставлять у відповідність зелений трикутник, тобто встановлюють взаємно однозначну відповідність між множинами червоних квадратів та зелених трикутників. Так як кожному червоному квадрату можна поставити у відповідність зелений трикутник і навпаки, то говорять, що 4=4.
Як пояснити дітям, що 3<4 ?
Для цього беруть також три червоних квадрата (множина А) і чотири зелених трикутника (множина В) і встановлюють взаємно однозначну відповідність між множиною, в якій 3 елемента і трьохелементною підмножиною множини, що містить 4 елемента.
В першому прикладі кожному елементу множини А (множини червоних квадратів) відповідає єдиний елемент множини В (множини зелених трикутників) і кожний елемент множини В (множини зелених трикутників) відповідає єдиному елементу множини А (множини червоних квадратів), тоді дана відповідність взаємно однозначна.
В другому прикладі кожному елементу множини А (множини червоних квадратів) відповідає єдиний елемент множини В (множини зелених трикутників), але не всім елементам множини В (множини зелених трикутників) відповідає єдиний елемент множини А (множини червоних квадратів), тоді дана відповідність не взаємно однозначна.
Якщо відповідності взаємно однозначні, то кількості елементів відповідних множин рівні.
Рівнопотужні множини
В теорії множин існує поняття рівнопотужних множин. Уточнимо дане поняття.
Означення. Множини Х і Y називаються рівнопотужними, якщо вони або порожні, або між ними встановлено взаємно однозначну відповідність.
Позначається
рівнопотужність множин:
Якщо
множина
Х рівнопотужна
множині
Y, то
записують так:
Рівнопотужність множин має свої характерні властивості:
1)
Рефлективність:
Будь яка множина рівнопотужна сама
собі.
2)
Симетричність:
3)
Транзитивність:
Так як відношення рівнопотужності має властивості рефлективності, симетричності і транзитивності, то воно є відношенням еквівалентності.
Рівнопотужні
множини можуть бути як скінченними
так і нескінченними.
Якщо множини скінченні
і рівнопотужні, то вони мають однакову
кількість елементів. Якщо множини Х та
Y скінченні і множина Х рівнопотужна
множині Y, то
.
Якщо множини нескінченні і рівнопотужні, то частина множини може бути рівнопотужною всій множині.
Наприклад. 1) Множина А = {1,2,3,4}, множина букв у слові «урок», множина, що містить чотири геометричні фігури – все це рівнопотужні множини. Вони містять однакову кількість елементів.
2)
Множина
натуральних чисел і її підмножина –
множина непарних натуральних чисел.
Поставимо у відповідність кожному
натуральному числу n
непарне число 2n
– 1. Ця
відповідність взаємно
однозначна:
кожному натуральному числу відповідає
єдине непарне число і кожне непарне
число відповідає єдиному натуральному
числу. Отже,
,
тобто множина натуральних чисел і
множина непарних натуральних чисел,
яка є підмножиною множини натуральних
чисел, рівнопотужні.
Довгий час вважали, що всі нескінченні множини рівнопотужні між собою. В 70-80-х роках XIX ст. видатний німецький математик Г.Кантор (1845-1918) встановив, що серед нескінченних множин є безліч нерівнопотужних між собою множин і що всі нескінченні множини також можна розбити на класи рівнопотужних множин.
Найменша нескінченна потужність – це потужність множини натуральних чисел.
Будь-яка множина називається зчисленною, якщо вона рівнопотужна множині натуральних чисел.
Наприклад: множина усіх квадратів натуральних чисел називається зчисленною, бо вона рівнопотужна множині натуральних чисел. Множина усіх натуральних чисел, кратних k, множина цілих чисел, множина раціональних чисел також зчисленні. Між ними і множиною натуральних чисел можна встановити взаємно однозначну відповідність.
Г.Кантор
довів, що множина дійсних чисел на
відрізку
не рівнопотужна множині натуральних
чисел N
і має більшу потужність, ніж потужність
множини N.
Користуючись поняттям рівнопотужності множин, можна уточнити поняття скінченної і нескінченної множин.
Означення. Множина А називається скінченною, якщо в ній жодним способом не можна виділити правильної частини В, рівнопотужної всій множині А. Якщо в А можна виділити рівнопотужну їй правильну частину В, то тоді А називається нескінченною множиною.
Це означення розкриває найхарактернішу відмінність між скінченними й нескінченними множинами. Не слід ототожнювати нескінченну множину і скінченну множину, яка містить дуже багато елементів.