
Билет 2.
Фаза - часть системы, однородная во всех точках по состоянию и свойствам и отдалённая от других частей системы поверхностью раздела. Система – совокупность тел, находящихся во взаимодействии между собой и отделенных от окружающей среды. химическая система - в которой возможно протекание хим.реакций. Термодинамическая система- в которой возможен масса теплообмен между всеми её сост.частями. изолированная система - у которой отсутствует масса и теплообмен с окр.средой. Закрытая система - у которой отсутствует масса, но возможен теплообмен с окр.средой . открытая - у которой возможен масса и теплообмен с окр.средой. Гомогенная - состоящая из одной фазы. Гетерогенная - состоящая из 2-х и более фаз.
Степень свободы-независимые возможные изменения состояния (в частности, положения) физ. системы, обусловленные вариациями её параметров. В термодинамике— независимые термодинамич. параметры. определяющие состояние термодинамич. равновесия системы. Число С. с. / равновесной термодинамич. системы определяется правилом фаз Гиббса. Пра́вило фаз (или правило фаз Гиббса) — соотношение, связывающее число веществ (компонентов), фаз и степеней свободы в гетерогенной системе. Правило фаз записывается следующим образом:
j+v=k+n, где j — число фаз (например, агрегатных состояний вещества);
v — число степеней свободы, то есть независимых параметров (температура, давление, концентрация компонентов), которые полностью определяют состояние системы при равновесии и которые можно менять без изменения числа и природы фаз;
k — число компонентов системы — число входящих в систему индивидуальных веществ за вычетом числа химических уравнений, связывающих эти вещества. Иначе говоря, это минимальное количество веществ, из которых можно приготовить каждую фазу системы.
n — число переменных, характеризующих влияние внешних условий на равновесие системы.
При переменных давлении и температуре правило фаз сводится к выражению: j+v=k+2
В случае однокомпонентной системы оно упрощается до: j+v=3
Отсюда видно, например, что в однокомпонентной системе три фазы (j=3) могут сосуществовать при числе степеней свободы v, равном нулю. Две фазы (j=2) сосуществуют при произвольном измененнии либо давления, либо температуры, когда вторая из этих переменных не является независимой (v=1), то есть двухфазному равновесию на фазовой диаграмме соответствует линия. Если фаза одна (j=1), число степеней свободы системы равно двум, то есть температура и давление могут менятся независимо в пределах некоторой области на фазовой диаграмме — пока система не окажется на одной из линий двухфазного равновесия. Иногда правило фаз записывают следующим образом: k+2>=j, то есть при равновесии число фаз в системе меньше либо равно числу компонентов плюс 2.
Равновесие в системе, состоящей из нескольких фаз, называется гетерогенным или фазовым равновесием. Является одним из основных случаев термодинамического равновесия и включает в себя условия равенства т-ры всех частей системы (термич. равновесие), равенства давления во всем объеме системы (мех. равновесие) и равенство хим. потенциалов каждого компонента во всех фазах системы, что обеспечивает равновесное распределение компонентов между фазами. Число фаз f, находящихся одновременно в равновесии, связано с числом компонентов k, числом n независимых параметров, определяющих состояние системы (обычно, когда учитывается только влияние т-ры и давления, n = 2), и числом термодинамич. степеней свободы v ур-нием: v = k + 2 - f. В общем виде условие фазового равновесия, согласно принципу равновесия Гиббса, сводится к максимуму энтропии S системы при постоянстве внутр. энергии U, общего объема V и числа молей каждого компонента ni.
2) Неоргани́ческие (минера́льные) кисло́ты — неорганические вещества, обладающие комплексом физико-химических свойств, которые присущи кислотам. неорг. в-ва, молекулы к-рых при электролитич. диссоциации в водной среде отщепляют протоны, в результате чего в р-ре образуются гидроксоний-катионы Н3О+ и анионы кислотных остатков А с зарядом «-». Исключение составляет борная к-та В(ОН)3, к-рая акцептирует ионы ОН-, в результате чего в водном р-ре создается избыток гидроксоний-катионов:
В(ОН)3+2Н2ОD[В(ОН)4]- + Н3О+ .
Большинство неорганических кислот при обычных условиях существуют в жидком состоянии, некоторые – в твёрдом состоянии (ортофосфорная, борная, вольфрамовая, поликремниевые (гидраты SiO2) и др.). Кислотами также являются водные растворы некоторых газообразных соединений (галогеноводородов, сероводорода H2S, диоксида азота NO2, диоксида углерода CO2 и др.). Некоторые кислоты (например, угольную Н2СО3, сернистую Н2SO3, хлорноватистую HClO и др.) невозможно выделить в виде индивидуальных соединений, они существуют только в растворе.
По химическому составу различают бескислородные кислоты (HCl, H2S, HF, HCN) и кислородсодержащие (оксокислоты)(H2SO4, H3PO4)
Номенклатура неорганических кислот прошла долгий путь развития и складывалась постепенно. Наряду с систематическими названиями кислот широко применяются традиционные и тривиальные. Некоторые распространённые кислоты могут в различных источниках иметь разные названия: например, водный раствор HCl может именоваться соляной, хлороводородной, хлористоводородной кислотой.
Традиционные русские названия кислот образованы прибавлением к названию элемента морфем -ная или -овая (хлорная, серная, азотная, марганцовая). Для разных кислородсодержащих кислот, образованных одним элементом, используется -истая для более низкой степени окисления (сернистая, азотистая). В ряде случаев для промежуточных степеней окисления дополнительно используются морфемы -новатая и -новатистая (см. ниже названия кислородсодержащих кислот хлора).
H3AsO4 – Мышьяковая – Арсенаты
H3ВO3 - Борная - Бораты
Для менее известных кислот, содержащих кислотообразующие элементы в переменных степенях окисления, обычно применяются систематические названия.
В систематических названиях кислот к корню латинского названия кислотообразующего элемента добавляют суффикс -ат
HClO4 — тетраоксохлорат(VII) водорода (хлорная кислота)
HClO3 — триоксохлорат(V) водорода (хлорноватая кислота)
HClO2 — диоксохлорат(III) водорода (хлористая кислота)
HClO — оксохлорат(I) водорода (хлорноватистая кислота)
H2Cr2O7 — гептаоксодихромат(VI) диводорода (дихромовая кислота)
H2S4O6 — гексаоксотетрасульфат диводорода (тетратионовая кислота)
К первому типу превращений кислот относятся реакции кислот с металлами, стоящими в ряду напряжений до Н. Fe+2H+ = Fe 2+ +H2
Реакции с основными оксидами и основаниями.
ZnO+H2SO4= ZnSO4 + H2O
Zn(OH)2 + H2SO4= ZnSO4 + 2H2O
Билет 4
1) Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции — отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов. Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:
В системе не совершается никакой работы, кроме возможной при P = const работы расширения.
Если реакцию проводят при стандартных условиях (Стандартные условия — значения температуры и давления, при которых определяются (или к которым приводятся) значения различных количественных характеристик веществ, зависящих от давления и температуры (например, электродные потенциалы, скорости звука и т. д.). при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔHrO. В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования. Результаты термохим.измерений- тепловые эффекты реакций- принято относить к одному молю образующегося вещества. Количество теплоты, которое выделилось при образовании одного моля соединения из простых веществ, наз. теплотой образования данного соединения. При расчёте теплоты образования элемент берётся в виде простого вещества, т.к оно более устойчиво при данных условиях. Теплоты образования наиболее устойчивых при данных условиях простых веществ принимаются за 0, а менее устойчивых равны теплотам их образования из устойчивых. Тепловые эффекты можно включать в уравнения реакций. Химические уравнения, в которых указано количество выделяющейся или поглощаемой теплоты, наз. термохимическими уравнениями. Или ТУ- уравнения, в которых указан тепловой эффект реакции и агрегатное состояние вещества. Величина теплового эффекта обычно указывается в правой части уравнения со знаком плюс(эндотерм.), со знаком минус(экзотерм.). ТУ реакции образования воды: 2H2 + O2= 2H2O =285,8 кДж. А вот теплота образования NO отрицательна и равна -90.25 лДж/моль. Соответствующее термохим.уварнение имеет вид: 1/2N2+1/2O2=NO- 90.25 кДж.
Важнейшей характеристикой веществ, применяемых в качестве топлива, явл.их теплота сгорания.
Теплота́ сгора́ния — это количество выделившейся теплоты при полном сгорании массовой (для твердых и жидких веществ) или объёмной (для газообразных) единицы вещества. Измеряется в джоулях или калориях. Теплота сгорания, отнесённая к единице массы или объёма топлива, называется удельной теплотой сгорания (дж или кал на 1 кг, м³ или моль). Для её измерения пользуются методами калориметрии. Теплота сгорания определяется химическим составом горючего вещества. Эту величину принято относить к одному молю вещества. Выражение «теплота сгорания ацетилена равно 1300 кДж/моль» эквивалентно термохимическому уравнению: C2H2+ 2и1/2O2=H2O+2CO2+1300 кДж.
2) Неэлектролиты — вещества, водные растворы и расплавы которых не проводят электрический ток, так как их молекулы не диссоциируют на ионы. Сильное физико-химическое взаимодействие при растворении приводит к сильному изменению свойств раствора (химическая теория растворов). Великий русский химик Д.И. Менделеев создал химическую теорию растворов, которую он обосновал многочисленными экспериментальными данными, изложенными в его книге «Исследования водных растворов по их удельному весу», вышедшей в 1887 г. Сольваты (гидраты) образуются за счет донорно-акцепторного, ион-дипольного взаимодействий, за счет водородных связей, а также дисперсионного взаимодействия (в случае растворов родственных веществ, например бензола и толуола). Особенно склонны к гидратации (соединению с водой) ионы. Ионы присоединяют полярные молекулы воды, в результате образуются гидратированные ионы; поэтому, например, в растворе ион меди (II) голубой, в безводном сульфате меди он бесцветный. Многие из таких соединений непрочны и легко разлагаются при выделении их в свободном виде, однако в ряде случаев образуются прочные соединения, которые можно легко выделить из раствора кристаллизацией. При этом выпадают кристаллы, содержащие молекулы воды. Кристаллические вещества, содержащие молекулы воды, называютя кристаллогидратами, а вода, входящая в состав кристаллогидратов, называется кристаллизационной. Кристаллогидратами являются многие природные минералы. Ряд веществ (в том числе и органические) получаются в чистом виде только в форме кристаллогидратов. Д.И. Менделеев доказал существование гидратов серной кислоты, а также ряда других веществ. Таким образом, растворение - не только физический, но и химический процесс. Растворы образуются путем взаимодействия частиц растворенного вещества с частицами растворителя. Ученик Д.И. Менделеева Д.П. Коновалов всегда подчеркивал, что между химическими соединениями и растворами нет границ. Жидкие растворы занимают промежуточное положение между химическими соединениями постоянного состава и механическими смесями. Как и химические соединения, они однородны и характеризуются тепловыми явлениями, а также часто наблюдающейся концентрацией - сокращением объема при смешивании жидкостей. С другой стороны, в отличие от химических соединений растворы не подчиняются закону постоянства состава. Они, как и смеси, могут быть легко разделены на составные части. Процесс растворения есть физико-химический процесс, а растворы - физико-химические системы.
Растворы неэлектролитов – частицы, плохо растворимые в воде, так как нет носителя электрического заряда. Закон Рауля справедлив только для разбавленных растворов неэлектролитов.
Зако́ны
Ра́уля — общее название открытых
французским химиком Ф. М. Раулем в 1887 г.
количественных закономерностей,
описывающих некоторые коллигативные
(зависящие от концентрации, но не от
природы растворённого вещества) свойства
растворов. Первый закон Рауля связывает
давление насыщенного пара над раствором
с его составом; он формулируется следующим
образом: Понижение давления насыщ.пара
растворителя над раствором прямо
пропорционально мольной доле растворённого
вещества, причём коэффициент
пропорциональности равен давлению
насыщенного пара над чистым компонентом.
Растворы, для которых выполняется закон Рауля, называются идеальными. Идеальными при любых концентрациях являются растворы, компоненты которых очень близки по физическим и химическим свойствам (оптические изомеры, гомологи и т. п.), и образование которых не сопровождается изменением объёма и выделением либо поглощением теплоты. В этом случае силы межмолекулярного взаимодействия между однородными и разнородными частицами примерно одинаковы, и образование раствора обусловлено лишь энтропийным фактором.
Отклонения от закона Рауля.
Растворы, компоненты которых существенно различаются по физическим и химическим свойствам, подчиняются закону Рауля лишь в области очень малых концентраций; при больших концентрациях наблюдаются отклонения от закона Рауля. Случай, когда истинные парциальные давления паров над смесью больше, чем вычисленные по закону Рауля, называют положительными отклонениями. Противоположный случай, когда парциальные давления паров компонентов оказываются меньше вычисленных — отрицательные отклонения.
Причиной отклонений от закона Рауля является то обстоятельство, что однородные частицы взаимодействуют друг с другом иначе, чем разнородные (сильнее в случае положительных и слабее в случае отрицательных отклонений).
Реальные растворы с положительными отклонениями от закона Рауля образуются из чистых компонентов с поглощением теплоты (ΔНраств > 0); объём раствора оказывается больше, чем сумма исходных объёмов компонентов (ΔV > 0). Растворы с отрицательными отклонениями от закона Рауля образуются с выделением теплоты (ΔНраств < 0); объём раствора в этом случае будет меньше, чем сумма исходных объёмов компонентов (ΔV < 0).