Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
voprosy_matematika (1).docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
1.57 Mб
Скачать

Линейные преобразования[править | править исходный текст]

Основная статья: Линейное отображение

Рассмотрим линейное преобразование  , действующее из  -мерного векторного пространства   в  -мерное векторное пространство  , имеющее следующий вид:

.

В матричной форме это преобразование уравнения вида:

.

Матрица   — это матрица коэффициентов линейного преобразования.

Если рассмотреть действие линейного преобразования   на векторы вида

,

составляюще базис пространства  , то   — это есть j-ый столбец матрицы  .

Таким образом, матрица   полностью описывает линейное преобразование  , и, поэтому, называется матрицей линейного преобразования.

6. Если к квадратной матрице дописать справа единичную матрицу того же порядка и с помощьюэлементарных преобразований над строками добиться того, чтобы начальная матрица, стоящая в левой части, стала единичной, то полученная справа будет обратной к исходной.

7. формула крамера

Описание метода

Для системы   линейных уравнений с   неизвестными (над произвольным полем)

с определителем матрицы системы  , отличным от нуля, решение записывается в виде

(i-ый столбец матрицы системы заменяется столбцом свободных членов). В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:

В этой форме формула Крамера справедлива без предположения, что   отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца(определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы   и  , либо набор   состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы для определителя Грама и Леммы Накаямы.

Пример

Система линейных уравнений:

Определители:

Решение:

Пример:

Определители:

8. Метод Гаусса

Пусть исходная система выглядит следующим образом

Матрица   называется основной матрицей системы,   — столбцом свободных членов.

Тогда, согласно свойству элементарных преобразований над строками, основную матрицу этой системы можно привести к ступенчатому виду (эти же преобразования нужно применять к столбцу свободных членов):

При этом будем считать, что базисный минор (ненулевой минор максимального порядка) основной матрицы находится в верхнем левом углу, то есть в него входят только коэффициенты при переменных  [3].

Тогда переменные   называются главными переменными. Все остальные называются свободными.

Если хотя бы одно число  , где  , то рассматриваемая система несовместна, т.е. у неё нет ни одного решения.

Пусть   для любых  .

Перенесём свободные переменные за знаки равенств и поделим каждое из уравнений системы на свой коэффициент при самом левом   ( , где   — номер строки):

, где 

Если свободным переменным системы (2) придавать все возможные значения и решать новую систему относительно главных неизвестных снизу вверх (то есть от нижнего уравнения к верхнему), то мы получим все решения этой СЛАУ. Так как эта система получена путём элементарных преобразований над исходной системой (1), то по теореме об эквивалентности при элементарных преобразованиях системы (1) и (2) эквивалентны, то есть множества их решений совпадают.

Пример

Покажем, как методом Гаусса можно решить следующую систему:

Обнулим коэффициенты при   во второй и третьей строчках. Для этого вычтем из них первую строчку, умноженную на   и  , соответственно:

Теперь обнулим коэффициент при   в третьей строке, вычтя из неё вторую строку, умноженную на  :

В результате мы привели исходную систему к треугольному виду, тем самым закончим первый этап алгоритма.

На втором этапе разрешим полученные уравнения в обратном порядке. Имеем:

 из третьего;

 из второго, подставив полученное 

 из первого, подставив полученные   и  .

Таким образом исходная система решена.

В случае, если число уравнений в совместной системе получилось меньше числа неизвестных, то тогда ответ будет записываться в виде фундаментальной системы решений.

9-10. Уравнение прямой на плоскости

Любую прямую на плоскости можно задать уравнением прямой первой степени вида

A x + B y + C = 0

где A и B не могут быть одновременно равны нулю.

Уравнение прямой с угловым коэффициентом

Общее уравнение прямой при B≠0 можно привести к виду

y = k x + b

где 

k - угловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ

Уравнение прямой в отрезках на осях

Если прямая пересекает оси OX и OY в точках с координатами (a, 0) и (0, b), то она может быть найдена используя формулу уравнения прямой в отрезках

x

 + 

y

 = 1

a

b

Уравнение прямой, проходящей через две различные точки на плоскости

Если прямая проходит через две точки A(x1, y1) и B(x2, y2), такие что x1 ≠ x2 и y1 ≠ y2 то уравнение прямойможно найти, используя следующую формулу

x - x1

 = 

y- y1

x2 - x1

y2 - y1

Параметрическое уравнение прямой на плоскости

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t+ x0

y =m t+ y0

где (x0, y0) - координаты точки лежащей на прямой, {1, m}- координаты направляющего вектора прямой.

Каноническое уравнение прямой на плоскости

Если известны координаты точки A(x0, y0) лежащей на прямой и направляющего вектора n= {j; m}, то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x - x0

 = 

y- y0

j

m

Пример. Найти уравнение прямой проходящей через две точки A(1, 7) и B(2,3).

Решение. Воспользуемся формулой для уравнения прямой проходящей через две точки

x - 1

 = 

y - 7

2 - 1

3 - 7

Из этого уравнения выразим y через x

x- 1

 = 

y- 7

1

-4

y- 7 = -4(x- 1)y = -4x + 11

Уравнение прямой в пространстве

Уравнение прямой, проходящей через две различные точки в пространстве

Если прямая проходит через две точки A(x1, y1, z1) и B(x2, y2, z2), такие что x1 ≠ x2, y1 ≠ y2 и z1 ≠ z2 то уравнение прямой можно найти используя следующую формулу

x- x1

 = 

y - y1

 = 

z - z1

x2 - x1

y2 - y1

z2 - z1

Параметрическое уравнение прямой в пространстве

Параметрические уравнения прямой могут быть записаны следующим образом

x = j t+ x0

y = m t+ y0

z = n t+ z0

где (x0, y0, z0) - координаты точки лежащей на прямой, {j; m; n}- координаты направляющего вектора прямой.

Каноническое уравнение прямой в пространстве

Если известны координаты точки A(x0, y0, z0) лежащей на прямой и направляющего вектора n= {j; m; n}, то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x- x0

 = 

y- y0

 = 

z - z0

j

m

n

Прямая как линия пересечения двух плоскостей

Если прямая является пересечением двух плоскостей, то ее уравнение можно задать следующей системой уравнений

A1x+ B1y+ C1z+ D1 = 0

A2x+ B2y+ C2z + D2 = 0

при условии, что не имеет место равенство

A1

 = 

B1

 = 

C1

.

A2

B2

C2

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]