Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
__Динамическое программирование_специалитет.doc
Скачиваний:
3
Добавлен:
01.05.2025
Размер:
2.74 Mб
Скачать

Тема 7. Задачи поиска оптимальных путей на графах с неотрицательными весами ребер.

План лекции:

Алгоритм Флойда – Уоршелла.

Алгоритм Дейкстры.

Краткое содержание лекции

Алгоритм Флойда - Уоршелла

Алгоритм Флойда - Уоршелла – динамический алгоритм для нахождения кратчайших расстояний между всеми вершинами взвешенного ориентированного графа. Разработан в 1962 году Робертом Флойдом и Стивеном Уоршеллом. Более строгая формулировка этой задачи следующая: есть ориентированный граф G = (V, Е) каждой дуге v –> w этого графа сопоставлена неотрицательная стоимость C[v, w]. Общая задача нахождения кратчайших путей заключается в нахождении для каждой упорядоченной пары вершин (v, w) любого пути от вершины v к вершине w, длина которого минимальна среди всех возможных путей от v к w.

Формальное описание. Для определенности положим, что вершины графа последовательно пронумерованы от 1 до n. Алгоритм Флойда использует матрицу А размера nn, в которой вычисляются длины кратчайших путей. Вначале A[i, j] = C[i, j] для всех i ≠ j. Если дуга i –> j отсутствует, то C[i, j] = infinity. Каждый диагональный элемент матрицы А равен 0. Над матрицей А выполняется n итераций. После k-й итерации A[i, j] содержит значение наименьшей длины путей из вершины i в вершину у, которые не проходят через вершины с номером, большим k.

Другими словами, между концевыми вершинами пути i и j могут находиться только вершины, номера которых меньше или равны k. На k-й итерации для вычисления матрицы А применяется следующая формула:

Ak[i,j] = min(Ak-1[i,j], Ak-1[i,k] + Ak-1[k,j])

Нижний индекс k обозначает значение матрицы А после k-й итерации, но это не означает, что существует n различных матриц, этот индекс используется для сокращения записи. Для вычисления Ak[i, j] проводится сравнение величины Ak-i[i, j] (т.е. стоимость пути от вершины i к вершине j без участия вершины k или другой вершины с более высоким номером) с величиной Ak-1[i, k] + Ak-1[k, j] (стоимость пути от вершины i до вершины k плюс стоимость пути от вершины k до вершины j). Если путь через вершину k дешевле, чем Ak-1[i, j], то величина Ak[i, j] изменяется.

Оценка сложности. Время выполнения этой программы, очевидно, имеет порядок O(n3), поскольку в ней практически нет ничего, кроме вложенных друг в друга трех циклов. Доказательство правильности работы этого алгоритма также очевидно и выполняется с помощью математической индукции по k, показывая, что на k-й итерации вершина k включается в путь только тогда, когда новый путь короче старого.

Пример графа и таблица расстояний для него.

0

1

2

3

4

0

0

12

5

22

1

7

0

11

10

2

14

7

0

17

3

19

12

5

0

4

4

15

8

1

Алгоритм Дейкстры.

Алгоритма Дейкстры находит оптимальные маршруты и их длину между одной конкретной вершиной (источником) и всеми остальными вершинами графа. Недостаток данного алгоритма в том, что он будет некорректно работать если граф имеет дуги отрицательного веса.

Формальное определение. Дан взвешенный ориентированный граф G(V,E) без петель и дуг отрицательного веса. Найти кратчайшие пути от некоторой вершины a графа G до всех остальных вершин этого графа.

Неформальное описание. Каждой вершине из V сопоставим метку – минимальное известное расстояние от этой вершины до a. Алгоритм работает пошагово – на каждом шаге он «посещает» одну вершину и пытается уменьшать метки. Работа алгоритма завершается, когда все вершины посещены.

Инициализация. Метка самой вершины a полагается равной 0, метки остальных вершин – бесконечности. Это отражает то, что расстояния от a до других вершин пока неизвестны. Все вершины графа помечаются как непосещённые.

Шаг алгоритма. Если все вершины посещены, алгоритм завершается. В противном случае, из ещё не посещённых вершин выбирается вершина u, имеющая минимальную метку. Мы рассматриваем всевозможные маршруты, в которых u является предпоследним пунктом. Вершины, в которые ведут рёбра из u, назовем соседями этой вершины. Для каждого соседа вершины u, кроме отмеченных как посещённые, рассмотрим новую длину пути, равную сумме значений текущей метки u и длины ребра, соединяющего u с этим соседом. Если полученное значение длины меньше значения метки соседа, заменим значение метки полученным значением длины. Рассмотрев всех соседей, пометим вершину u как посещенную и повторим шаг алгоритма.

Рассмотрим алгоритм на примере, возьмем ориентированный граф G:

Этот граф можно представить в виде матрицы С:

Возьмем в качестве источника вершину 1. Это значит что мы будем искать кратчайшие маршруты из вершины 1 в вершины 2, 3, 4 и 5. Данный алгоритм пошагово перебирает все вершины графа и назначает им метки, которые являются известным минимальным расстоянием от вершины источника до конкретной вершины. Рассмотрим этот алгоритм на примере. Присвоим 1-й вершине метку равную 0, потому как эта вершина – источник. Остальным вершинам присвоим метки равные бесконечности.

Далее выберем такую вершину W, которая имеет минимальную метку (сейчас это вершина 1) и рассмотрим все вершины, в которые из вершины W есть путь, не содержащий вершин посредников. Каждой из рассмотренных вершин назначим метку равную сумме метки W и длинны пути из W в рассматриваемую вершину, но только в том случае, если полученная сумма будет меньше предыдущего значения метки. Если же сумма не будет меньше, то оставляем предыдущую метку без изменений.

После того как мы рассмотрели все вершины, в которые есть прямой путь из W, вершину W отмечаем как посещённую, и выбираем из ещё не посещенных такую, которая имеет минимальное значение метки, она и будет следующей вершиной W. В данном случае это вершина 2 или 5. Если есть несколько вершин с одинаковыми метками, то не имеет значения какую из них мы выберем как W.

Выберем вершину 2. Но из нее нет ни одного исходящего пути, поэтому сразу отмечаем эту вершину как посещенную и переходим к следующей вершине с минимальной меткой. На этот раз только вершина 5 имеет минимальную метку. Рассмотрим все вершины в которые есть прямые пути из 5, но которые ещё не помечены как посещенные. Снова находим сумму метки вершины W и веса ребра из W в текущую вершину, и если эта сумма будет меньше предыдущей метки, то заменяем значение метки на полученную сумму.

Исходя из картинки мы можем увидеть, что метки 3-ей и 4-ой вершин стали меньше, тоесть был найден более короткий маршрут в эти вершины из вершины источника. Далее отмечаем 5-ю вершину как посещенную и выбираем следующую вершину, которая имеет минимальную метку. Повторяем все перечисленные выше действия до тех пор, пока есть непосещенные вершины. Выполнив все действия получим:

Также есть вектор Р, исходя из которого можно построить кратчайшие маршруты. По количеству элементов этот вектор равен количеству вершин в графе, Каждый элемент содержит последнюю промежуточную вершину на кратчайшем пути между вершиной-источником и конечной вершиной. В начале алгоритма все элементы вектора Р равны вершине источнику (в нашем случае Р = {1, 1, 1, 1, 1}). Далее на этапе пересчета значения метки для рассматриваемой вершины, в случае если метка рассматриваемой вершины меняется на меньшую, в массив Р мы записываем значение текущей вершины W. Например: у 3-ей вершины была метка со значением «30», при W=1. Далее при W=5, метка 3-ей вершины изменилась на «20», следовательно мы запишем значение в вектор Р – Р[3]=5. Также при W=5 изменилось значение метки у 4-й вершины (было «50», стало «40»), значит нужно присвоить 4-му элементу вектора Р значение W — P[4]=5. В результате получим вектор Р = {1, 1, 5, 5, 1}. Зная что в каждом элементе вектора Р записана последняя промежуточная вершина на пути между источником и конечной вершиной, мы можем получить и сам кратчайший маршрут.