Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1_modul.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
197.56 Кб
Скачать

9.) Назовите основные акустические характеристики сред. Поясните механизм затухания акустических волн.

К основным характеристикам можно отнести:

Удельное волновое сопротивление сопротивление среды (характеристический импеданс). Представляет собой отношение акустического давления к колебательной скорости в бегущей волне: Коэффициент затухания – характеризует ослабление волны в следствие необратимых потерь при ее распространении в среде. Коэффициент затухания складывается из коэффициента поглащения и коэффициента рассеяния. Коэффициент затухания cреды определяется расстоянием, на котором амплитуда плоской волны уменьшается в е раз, и представляет собой сумму коэффициентов поглощения п и рассеяния p:

Распространение акустических волн в реальных средах сопровождается ослаблением или затуханием волн, т.е. уменьшением амплитуды и, следовательно, интенсивности волны по мере ее распространения.

Затухание звука является важным свойством сред и обусловлено рядом причин. Основными из них являются: убывание амплитуды волны с расстоянием от источника из-за геометрического расхождения волн; рассеяние на неоднородностях cреды, в результате чего уменьшается поток энергии в первоначальном направлении; необратимый переход энергии волны в другие формы, в частности в тепло, т.е. поглощение звука.

10.) Как зависит коэффициент затухания от структуры среды и от частоты колебаний? Какое значение придаётся затуханию волн в акустическом контроле?

Анизотропия - происходит рассеяние, потеря энергии и умен. амплитуды. Умен. частоты дает возможность умен. рассеяния. Увел. размера зерна приводит к увел. коэф. затухания. В полимерах затухание выше, чем в металлах. При наступает пик коэф. затухания.Коэф. затухания сдвиговой волны по крайне мере в 2 раза больше, чем у продольной волны.

Поскольку затухание и в частности рассеяние звука в материале является существенным препятствием для проведения ультразвукового контроля и во многих случаях вообще ограничивает его применимость, представляет большой практический интерес возможность оценки влияния кристаллической струк­туры вещества на затухание. До общего решения здесь еще очень далеко, так как этому препятствуют и теоретические трудности, и возможности техники измерений; к тому же бесспорно, что кроме величин, поддающихся непосредственному измерению (например, размера зерна и анизотропии), здесь сказы­ваются и многочисленные другие параметры, более трудно поддающиеся регистрации. Сюда относятся, например, свойства границ зерен и внутренние напряжения. К тому же даже величина зерна не является четким понятием, как это видно по микрошлифам сталей, имеющих сложную структуру.

Четкой закономерности поэтому можно ожидать только при простых структурах лишь с одним видом и одной формой кристаллов при минимально возможном количестве загрязнений. При этом речь не обязательно должна идти о чистых металлах. Сплавы с истинными твердыми растворами не являются исключением. В таких случаях наблюдается легко выявляемое влияние анизотропии и размеров зерна. Например, если сравнить два образца из алюминиевого и латунного литья с одинаковой величиной зерна, то затухание в латуни будет много сильнее, чем в алюминии. Если далее взять две пробы одного и того же вещества с различной величиной зерна, то окажется, что у латуни изменение затухания в зависимости от величины зерна будет выражено много сильнее, чем у алюминия. Последнее сопоставление можно провести не при большей величине зерна, а при меньшей длине волны. Таким образом, большее отношение диаметра зерна к длине волны дает тем более сильное затухание, чем сильнее выражена анизотропия.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]