Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Rabochaya_tetrad_1.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
435.03 Кб
Скачать

Задача №2.

Определить усилия в стержнях АС и АВ, возникающие от силы F, приложенной к узлу А, аналитическим и графическим методами (рис.4).

Дано: F = 40 кН.

A F

90o

B 90o 40o C

Рис.4

Определить: усилия N1 и N2.

Решение:

A F A F

90o

1 2 500 N2

B 90o 40o C N1

Рис.5 Рис.6

1. Строим схему, соблюдая все заданные углы (без соблюдения масштаба сил, рис.5). Рассматриваем равновесие точки А, в которой сходятся все стержни и внешние силы.

2. Отбрасываем связи АВ и АС, заменяя их усилиями в стержнях N1 и N2. Направление усилий примем от узла А, предполагая стержни растянутыми. Выполним на отдельном чертеже схему действия сил в точке А (рис.6).

3. Выберем систему координат таким образом, чтобы одна из осей совпала с неизвестным усилием. Составляем уравнения равновесия плоской системы сходящихся сил:

(1)

(2)

Из уравнения ( ) находим усилие :

Найденное значение подставляем в уравнение ( ) и находим из него значение :

Окончательно получаем:

N1 =

N2 =

II. Графический метод.

1. Так как узел А находится в равновесии, то многоугольник из заданной и двух искомых сил должен быть замкнутым. Выбираем масштаб сил m = 10кН/см, тогда сила F будут откладываться отрезком:

Из произвольной т.О откладываем отрезок, соответствующий величине и направлению силы

Силы N1 и N2 неизвестны, но известны их направления. Поэтому, зная, что силовой многоугольник должен быть замкнут (условие равновесия сходящихся сил), из начала отрезка F проводим прямую, параллельную вектору , а из конца отрезка F проводим прямую, параллельную вектору . Точка их пересечения является вершиной силового многоугольника (рис 7). Стрелки у искомых векторов ставим так, чтобы они шли в одном направлении со стрелками заданных векторов. Получим замкнутый силовой многоугольник.

Рис.7

N1= см; N2 = см.

Измерив отрезки и, умножая их на масштаб, получим:

N1= · 10 = кН;

N2 = · 10 = кН.

Остается выяснить, растянуты или сжаты стержни N1 и N2. Для этого нужно сравнить их направление в многоугольнике сил с направлениями, что мы предположили в начале. Если направления совпадают, то стержень растянут, если направления не совпадают, то стержень сжат.

Окончательно получим:

N1 = кН,

N2 = кН.

Ответ:

Аналитическое решение: N1 = кН

N2 = кН.

Графическое решение: N1 = кН

N2 = кН.

ВАРИАНТ №19

Задача №1.

Определить равнодействующую сходящихся сил аналитическим и графическим методами (рис 1).

y F1 Дано:

F1 = 80 кН, F2 = 90 кН,

F3 = 100 кН, α1 = 72 о,

α1 F2 x α2 = 83о.

α2 Определить: R.

F3

Рис.1

Решение.

  1. Аналитический метод.

Сначала надо определить проекции заданных сил на оси координат, после чего легко найти проекцию равнодействующей силы на эти оси.

Величину равнодействующей найдем по формуле

Строим схему с соблюдением заданных углов α1 и α2 (без соблюдения масштаба сил, рис 2).

y

x

Рис.2

Для вычисления проекций сил сначала определяем знак проекции, а затем ее абсолютную величину. Проекция положительна, если угол между положительным направлением оси и силой меньше 900 (сила и ось направлены в одну сторону); в противном случае проекция отрицательна. Чтобы получить величину проекции, надо умножить величину силы на косинус угла между силой и ее проекцией (т.е. всегда берется косинус острого угла).

Проекция равнодействующей силы:

ее величина

2.Графический метод.

Выберем масштаб сил: m = 10кН/см, тогда силы F1, F2, F3 будут откладываться отрезками:

Рис.3

R = см

R = · m = ·10 = кН.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]