Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПЗ-1.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
471.04 Кб
Скачать

Раздел 1. Парный регрессионный анализ

1.1. Методические указания

Парная регрессия - уравнение связи двух переменных у и х:

где у - зависимая переменная (результативный признак);

х - независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Линейная регрессия: .

Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.

Регрессии, нелинейные по объясняющим переменным:

  • полиномы разных степеней

  • равносторонняя гипербола .

Регрессии, нелинейные по оцениваемым параметрам:

  • степенная ;

  • показательная ;

  • экспоненциальная .

Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических минимальна, т.е.

.

Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно а и b:

Можно воспользоваться готовыми формулами, которые вытекают из этой системы:

Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции rху для линейной регрессии (-1 ≤ rху ≤ 1):

и индекс корреляции ρху - для нелинейной регрессии (0 ≤ ρху 1):

Теснота линейной связи между переменными может быть оценена на основании шкалы Чеддока:

Теснота связи

Значение коэффициента корреляции при наличии:

Прямой связи

Обратной связи

Слабая

0,1-0,3

(–0,3)–(–0,1)

Умеренная

0,3-0,5

(–0,5)–(–0,3)

Заметная

0,5-0,7

(–0,7)–(–0,5)

Высокая

0,7-0,9

(–0,9)–(–0,7)

Весьма высокая

0,9-1

(–1)–(–0,9)

Положительное значение коэффициента корреляции говорит о положительной связи между х и у, когда с ростом одной из переменных другая тоже растет. Отрицательное значение коэффициента корреляции означает то, что с ростом одной из переменных другая убывает, с убыванием одной из переменной другая растет.

Оценку качества построенной модели дает коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации.

Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:

Допустимый предел значений -не более 8-10%.

Средний коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения:

где f'(х) — первая производная, характеризующая соотношение приростов результата и фактора для соответствующей формы связи.

Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:

где - общая сумма квадратов отклонений;

- сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);

- остаточная сумма квадратов отклонений.

Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака .у характеризует коэффициент (индекс) детерминации R2:

Коэффициент детерминации - квадрат коэффициента или индекса корреляции.

F-mecm - оценивание качества уравнения регрессии - состоит в проверке гипотезы Н0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл, значений F-критерия Фишера. Fфакт определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:

,

где n - число единиц совокупности;

т - число параметров при переменных х.

Fтабл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости α. Уровень значимости α - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно а принимается равной 0,05 или 0,01.

Если Fтабл < Fфакт, то H0, гипотеза о случайной природе оцениваемых характеристик отклоняется, и признается их статистическая значимость и надежность. Если Fтабл > Fфакт, то гипотеза Н0 не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н0 о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:

Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:

; ;

Сравнивая фактическое и критическое (табличное) значения t-статистики – tтабл и tфакт - принимаем или отвергаем гипотезу Н0.

Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством

Если tтабл < tфакт, то Н0 отклоняется, т.е. а, b и rху не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора х. Если tтабл > tфакт, то гипотеза Н0 не отклоняется и признается случайная природа формирования а, b или rxy.

Для расчета доверительного интервала определяем предельную ошибку Δ для каждого показателя:

Формулы для расчета доверительных интервалов имеют следующий вид:

Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.

Прогнозное значение ур определяется путем подстановки в уравнение регрессии ух =а + bх соответствующего (прогнозного) значения хр. Вычисляется средняя стандартная ошибка прогноза :

где

и строится доверительный интервал прогноза: