Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы по неорган..docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
715.28 Кб
Скачать

3. Будова атома в світі електронних уявлені. Характеристика елемента по положенню в періодичній системі д.І. Менделєєва.

А́том (або не́ділка[1] від грец. άτομοσ — неподільний) — найменша, електронейтральна, хімічнонеподільна частинка хімічного елемента. Атом складається з щільного ядра з позитивно заряджених протонів та електрично нейтральних нейтронів, яке оточене набагато більшою хмарою негативно заряджених електронів. Коли число протонів відповідає числу електронів, атом електрично нейтральний; в іншому випадку це є іон, з певним електричним зарядом. Атоми класифікують відповідно до числа протонів та нейтронів: число протонів визначає хімічний елемент, а число нейтронів визначає нуклід елемента.

Утворюючи між собою зв'язки, атоми об'єднуються в молекули і великі за розміром тверді тіла.

Про існування найдрібніших частинок речовини людство здогадувалося ще з давніх часів, проте підтвердження існування атомів було отримане лише в кінці 19-го століття. Але майже одразу ж стало зрозуміло, що атоми, в свою чергу, мають складну будову, якою визначаються їхні властивості.

Концепція атома як найменшої неподільної частинки матерії вперше була запропонована на початку I тисячоліття до н. е. Мохом і популяризована Демокритом — який, власне, і запровадив в науковий обіг термін «атом». В 17-му та 18-му століттях хіміки встановили, що хімічні речовини вступають в реакції в певних пропорціях, які виражаються за допомогою малих чисел. Крім того вони виділили певні найпростіші речовини, які назвали хімічними елементами. Ці відкриття привели до відродження ідеї про неподільні частинки. Розвиток термодинаміки і статистичної фізики показав, що теплові властивості тіл можна пояснити рухом таких частинок. Врешті-решт були експериментально визначені розміри атомів.

Наприкінці 19-го та на початку 20-го століть, фізики відкрили першу з субатомних частинок — електрон, а дещо пізніше атомне ядро, таким чином показавши, що атом не є неподільний. Розвиток квантової механіки дозволив пояснити не лише будову атомів, а також їхні властивості: оптичні спектри, здатність вступати в реакції й утворювати молекули тощо.

Загальна характеристика будови атома

Сучасні уявлення про будову атома базуються на квантовій механіці. На популярному рівні будову атома можна викласти у рамках хвильової моделі, яка опирається на модель Бора, але враховує також додаткові відомості з квантової механіки.

За цією моделлю:

Атоми складаються із елементарних частинок (протонів, електронів, та нейтронів). Маса атома в основному зосереджена в ядрі, тому більша частина об'єму відносно порожня. Ядро оточене електронами. Кількість електронів дорівнює кількості протонів у ядрі, кількість протонів визначає порядковий номер елемента в періодичній системі. У нейтральному атомі сумарний негативний заряд електронів дорівнює позитивному зарядові протонів. Атоми одного елемента з різною кількістю нейтронів називаються ізотопами.

У центрі атома знаходиться крихітне, позитивно заряджене ядро, що складається з протонів та нейтронів.

Ядро атома приблизно в 100 000 разів менше, ніж сам атом. Таким чином, якщо збільшити атом до розмірів аеропорту Бориспіль, розмір ядра буде меншим від розміру кульки для настільного тенісу.

Ядро оточене електронною хмарою, яка займає більшу частину його об'єму. В електронній хмарі можна виділити оболонки, для кожних з яких існує кілька можливих орбіталей. Заповнені орбіталі складають електронну конфігурацію, властиву для кожного хімічного елемента.

Кожна орбіталь може містити до двох електронів, що характеризуються трьома квантовими числами: основним, орбітальним і магнітним.

Кожен електрон на орбіталі має унікальне значення четвертого квантового числа: спіну.

Орбіталі визначаються специфічним розподілом ймовірності того, де саме можна знайти електрон. Приклади орбіталей та їхні позначення приведені на рисунку праворуч. «Границею» орбіталі вважається відстань, на якій імовірність того що електрон може перебувати поза нею є меншою 90%.

Кожна оболонка може містити не більше від строго визначеного числа електронів. Наприклад, найближча до ядра оболонка може мати максимум два електрони, наступна — 8, третя від ядра — 18

Коли електрони приєднуються до атома, вони займають орбіталь із найнижчою енергією. Лише електрони зовнішньої оболонки можуть брати участь в утворенні міжатомних зв'язків. Атоми можуть віддавати та приєднувати електрони, стаючи позитивно або негативно зарядженими іонами. Хімічні властивості елемента визначаються тим, з якою легкістю ядро може віддавати або здобувати електрони. Це залежить як від числа електронів так і від ступеня заповненості зовнішньої оболонки.

Електронні оболонки та орбіталі

Складні атоми мають десятки, а для дуже важких елементів, навіть сотні електронів. Згідно з принципом нерозрізнюваності часток електронні стани атомів формуються всіма електронами, й неможливо визначити, де перебуває кожен із них. Однак, в так званому одноелектронному наближенні, можна говорити про певні енергетичні стани окремих електронів.

Згідно з цими уявленнями існує певний набір орбіталей, які заповнюються електронами атома. Ці орбіталі утворюють певну електронну конфігурацію. На кожній орбіталі може знаходитися не більше двох електронів (принцип виключення Паулі). Орбіталі групуються в оболонки, кожна з яких може мати лише певне фіксоване число орбіталей (1, 4, 10 тощо). Орбіталі поділяють на внутрішні й зовнішні. В основному стані атома внутрішні оболонки повністю заповнені електронами.

На внутрішніх орбіталях електрони перебувають дуже близько до ядра й сильно до нього прив'язані. Щоб вирвати електрон з внутрішньої орбіталі потрібно надати йому велику енергію, до кількох тисяч електрон-вольт. Таку енергію електрон на внутрішній оболонці може отримати лише поглинувши квант рентгенівського випромінювання. Енергії внутрішніх оболонок атомів індивідуальні для кожного хімічного елемента, а тому за спектром рентгенівського поглинання можна ідентифікувати атом. Цю обставину використовують в рентгенівському аналізі.

На зовнішній оболонці електрони перебувають далеко від ядра. Саме ці електрони беруть участь в формуванні хімічних зв'язків, тому зовнішню оболонку називають валентною, а електрони зовнішньої оболонки валентними електронами.

Хімічні властивості

Хімічні властивості атома визначаються в основному валентними електронами — електронами на зовнішній оболонці. Кількість електронів на зовнішній оболонці визначає валентність атома.

Атоми останнього стовпчика періодичної таблиці елементів мають повністю заповнену зовнішню оболонку, а для переходу електрона на наступну оболонку потрібно надати атому дуже велику енергію. Тому ці атоми інертні, не схильні вступати в хімічні реакції. Інертні гази зріджуються й кристалізуються тільки при дуже низьких температурах.

Атоми першого стовпчика періодичної таблиці елементів мають на зовнішній оболонці один електрон, і є хімічно активними. Їхня валентність дорівнює 1. Характерним типом хімічного зв'язку для цих атомів у кристалізованому стані є металічний зв'язок.

Атоми другого стовпчика періодичної таблиці в основному стані мають на зовнішній оболонці 2 s-електрони. Їхня зовнішня оболонка заповнена, тому вони мали б бути інертними. Але для переходу із основного стану із конфігурацією електронної оболонки s² у стан із конфігурацією s¹p¹ потрібно дуже мало енергії, тож ці атоми мають валентність 2, проте вони проявляють меншу активність.

Атоми третього стовпчика періодичної таблиці елементів (у короткій формі) мають у основному стані електронну конфігурацію s²p¹. Вони можуть проявляти різну валентність: 1, 3, 5. Остання можливість виникає тоді, коли електронна оболонка атома доповнюється до 8 електронів і стає замкнутою.

Атоми четвертого стовпчика короткої форми періодичної таблиці елементів здебільшого мають валентність 4 (наприклад, вуглекислий газ CO2), хоча можлива й валентність 2 (наприклад, чадний газ CO). До цього стовпчика належить вуглець — елемент, який утворює найрізноманітніші хімічні сполуки. Сполукам вуглецю присвячений особливий розділ хімії — органічна хімія. Інші елементи цього стовпчика — кремній, германій при звичайних умовах є твердотільними напівпровідниками.

Елементи п'ятого стовпчика мають валентність 3 або 5.

Елементи шостого стовпчика короткої форми періодичної таблиці в основному стані мають конфігурацію s²p4 і загальний спін 1. Тому вони двовалентні. Існує також можливість переходу атома в збуджений стан s²p³s' зі спіном 2, в якому валентність дорівнює 4 або 6.

Елементам сьомого стовпчика короткої форми періодичної таблиці не вистачає одного електрона на зовнішній оболонці для того, щоб її заповнити. Вони здебільшого одновалентні. Проте можуть вступати в хімічні сполуки в збуджених станах, проявляючи валентності 3,5,7.

Для перехідних елементів характерне заповнення зовнішньої s-оболонки, перш ніж повністю заповнюється d-оболонка. Тому вони здебільшого мають валентність 1 або 2, але в деяких випадках один із d-електронів бере участь в утворенні хімічних зв'язків, і валентність стає рівною трьом.

При утворенні хімічних сполук атомні орбіталі видозмінюються, деформуються і стають молекулярними орбіталями. При цьому відбувається процес гібридизації орбіталей — утворення нових орбіталей, як специфічної суми базових.