Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
elektrodinamika.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
833.63 Кб
Скачать
    1. Второе уравнение Максвелла основано на предположении, что всякое изменение электрического поля вызывает возникновение в окружающем пространстве вихревого магнитного поля.

    2. Количественной мерой магнитного действия переменного электрического поля является ток смещения.

    3. Током смещения сквозь произвольную замкнутую поверхность s называется физическая величина, равная потоку вектора плотности тока смещения сквозь эту поверхность

с плотностью тока смещения где D – вектор электрического смещения.

    1. Токи смещения проходят по тем участкам цепи переменного тока, где отсутствуют проводники (например, между обкладок конденсатора).

    2. В диэлектрике вектор электрического смещения равен где Р – вектор поляризованности. Тогда плотность тока смещения где   – плотность тока смещения в вакууме, а   – плотность тока поляризации (смещение зарядов в молекулах неполярных диэлектриков или поворот диполей полярных диэлектриков).

    1. Токи смещения не сопровождаются выделением теплоты.

    2. Второе уравнение Максвелла в интегральной форме имеет вид

    1. По теореме Стокса а полный ток вследствие чего в дифференциальном виде второе уравнение Максвелла имеет вид

14. Полная система уравнений Максвелла в интегральной форме.

Введение Максвеллом понятия тока смещения привело его к завершению созданной им макроскопической теории электромагнитного поля, позволившей с единой точки зре­ния не только объяснить электрические и магнитные явления, но и предсказать новые, существование которых было впоследствии подтверждено.

В основе теории Максвелла лежат рассмотренные выше четыре уравнения:

1. Электрическое поле может быть как потенциальным (ЕQ), так и вихревым (ЕB), поэтому напряженность суммарного поля Е=ЕQB. Так как циркуляция вектора ЕQ равна нулю , а циркуляция вектора ЕB определяется выражением, то циркуляция вектора напряженности суммарного поля:

Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н:

Это уравнение показывает, что магнитные поля могут возбуждаться либо движущими­ся зарядами (электрическими токами), либо переменными электрическими полями.

3. Теорема Гаусса для поля D:

Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью , то эта формула запишется в виде:

4. Теорема Гаусса для поля В:

Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует следующая связь (изотропные несегнетоэлектрические и неферромагнитные среды):

Из уравнений Максвелла вытекает, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Мак­свелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.

15)

Система уравнений Максвелла : диффер. форма. Материальные уравнения.

Теорией Максвелла назвывается последовательная теория единого электромагнитного поля, создаваемого произвольной системой электрических зарядов и токов. В теории Максвелла решается основная задача электродинамики :заданному распределению зарядов и токов отыскиваются характеристики создаваемых ими электрического и магнитного полей. Если мы из системы 4-х уравнений перейдем в проэкции на оси ( E - Ex Ey Ez, B - Bx By Bz), то не сможем решить ее, из-за большого кол-ва неизвестных. Для их нахождения пользуются так называемыми материальными уравнениями, характеризующими электрические и магнитные св-ва среды.

Анализ уравнений Максвелла. 1-е уравнение указывает на то, что поле является вихревым (вопр. 30). 2-е уравнение - Максвелл обобщил теорему Остроградского-Гаусса для электростатического поля. Он предположил, что она справедлива для любого электрического поля как стационарного, так и переменного. 3-е уравнение : См. ток смещения. В интегральной форме показывает, что циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру равна алгебраической сумме макротоков и тока смещения сквозь поверхность, натянутую на этот контур. 4-е уравнение - теорема Остроградского-Гаусса справедлива для любого магнитного поля.

Если электрические и магнитные поля стационарны (dD/dt = dB/dt = 0), то эти поля существуют независимо друг от друга. Электрическое поле описывается двумя уравнениями электростатики : rot E = 0 и div D

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]