Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Органы иммунной системы.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.51 Mб
Скачать

Гамма-дельта t-клетки

(Т – клеточные рецепторы)

5-10% T-клеток несут на своей поверхности ТКРгамма-дельта и обозначаются как гамма-дельта T-клетки . Они практически полностью локализуются в эпидермисе и слизистой желудочно-кишечного тракта. Антигенный рецептор гамма-дельтаТ-лимфоцита сходен с ВCR(В-клеточный рецептор), его активный центр непосредственно связывается с эпитопом антигена. В отличие от альфа-бетта-типа, гамма-дельта Т-клеточный рецептор не требует для рецепции процессинга антигена, а также его презентации в комплексе с молекулами МНС. Иммунорецептор гамма-дельтаТ-лимфоцита обладает узким «репертуаром» специфичности. Клетки ориентированы на распознавание некоторых широко распространенных микробных антигенов (липопротеинов, белков теплового шока, бактериальных суперантигенов и др.). Клетки принимают участие в удалении патогенов на ранних этапах противоинфекционной защиты.

Гамма-дельтаТ-лимфоциты могут быть как эффекторными, цитотоксическими клетками, так и регуляторами иммунореактивности. Они синтезируют цитокины, активирующие местный иммунитет и локальную воспалительную реакцию, в том числе усиливают образование Т2-хелперов. Кроме того, гамма-дельта-клетки продуцируют ИЛ-7 и контролируют тем самым численность собственной популяции.

11) По степени чужеродности: ксено-, алло- и изоантигены.

Ксеногенные антигены (или гетерологичные) — общие для организмов, стоящих на разных ступенях эволюционного развития, например, относящиеся к разным родам и видам. Впервые феномен общности ряда антигенов у животных различных видов был отмечен Д. Форсманом (1911). Ученый иммунизировал кролика суспензией органов морской свинки. Оказалось, что полученная в ходе эксперимента иммунная сыворотка была способна взаимодействовать не только с антигенами морской свинки, но также агглютинировать эритроциты барана. Позже было установлено, что морская свинка и баран имеют ряд структурно сходных антигенных детерминант, дающих перекрестное реагирование. В дальнейшем перечень подобных ксеногенных антигенов был расширен десятками и сотнями пар и даже триплетов, которые формировали между собой как теплокровные, так и холоднокровные животные, растения и микробы. Все эти антигены получили обобщенное название антигены Форсмана. В настоящее время антигены Форсмана рассматривают в историческом аспекте, а исследование гетероантигенов широко применяется в судебно-медицинской экспертизе, палеонтологии и других областях медицины и естествознания.

Аллогенные антигены (или групповые) — общие для генетически неродственных организмов, но относящихся к одному виду. На основании аллоантигенов общую популяцию организмов можно подразделить на отдельные группы. Примером таких антигенов у людей являются антигены групп крови (системы АВО и др.) и многие другие. Аллогенные ткани при трансплантации иммунологически несовместимы — они отторгаются или лизируются реципиентом. Микробы на основании групповых антигенов могут быть подразделены на серогруппы. Это имеет большое значение для микробиологической диагностики (например, классификация сальмонелл Кауфмана—Уайта) и эпидемиологического прогнозирования.

Изогенные антигены (или индивидуальные) — общие только для генетически идентичных организмов, например для однояйцовых близнецов, инбредных линий животных. Изотрансплантаты обладают практически полной иммунологической совместимостью и не отторгаются реципиентом при пересадке. Примером таких антигенов в популяции людей являются антигены гистосовместимости, а у бактерий — типовые антигены, не дающие дальнейшего расщепления. В пределах отдельного организма в определенных анатомо-морфологических образованиях (например, органах или тканях) обнаруживаются специфичные для них антигены, которые в других органах и тканях больше не встречаются. Это, например, раковоэмбриональные антигены (альфа-фетопротеин, трансферрин). Такие антигены получили обобщенное название органо- и тканеспецифических. Отдельным критерием классификации является направленность активации и обеспеченность иммунного реагирования в ответ на внедрение антигена. В зависимости от физико-химических свойств вещества, условий его внедрения, характера реакции и реактивности макроорганизма различают иммуногены, толерогены и аллергены.

Иммуногены при попадании в организм способны индуцировать продуктивную реакцию иммунной системы, которая заканчивается выработкой факторов иммунитета (антитела, антигенореактивные клоны лимфоцитов). В клинической практике иммуногены используют для иммунодиагностики, иммунотерапии и иммунопрофилактики многих патологических состояний.

Толероген является полной противоположностью иммуногену. При взаимодействии с системой приобретенного иммунитета он вызывает включение альтернативных механизмов, приводящих к формированию иммунологической толерантности или неотвечаемости на эпитопы данного толерогена. Толерогену, как правило, присуща мономерность, низкая молекулярная масса, высокая эпитопная плотность и высокая дисперсность (безагрегатность) коллоидных растворов. Толерогены используют для профилактики и лечения иммунологических конфликтов и аллергии путем наведения искусственной неотвечаемости на отдельные антигены.

Аллерген также воздействует на систему приобретенного иммунитета. Однако, в отличие от иммуногена, производимый им эффект формирует патологическую реакцию организма в виде гиперчувствительности немедленного или замедленного типа. По своим свойствам аллерген не отличается от иммуногена. В клинической практике аллергены применяют для диагностики инфекционных и аллергических заболеваний.

Среди иммуногенов выделяют две группы антигенов, различающихся по необходимости вовлечения Т-лимфоцитов в индукцию иммунного ответа. Это — Т-зависимые и Т-независимые антигены.

Иммунная реакция в ответ на введение Т-зависимого антигена реализуется при обязательном участии Т-лимфоцитов (Т-хелперов). К Т-зависимым относится большая часть известных антигенов.

В то же время для развития иммунного ответа на Т-независимые антигены не требуется привлечение Т-хелперов. Эти антигены способны непосредственно стимулировать В-лимфоциты к антителопродукции, дифференцировке и пролиферации, а также вызывать иммунный ответ у бестимусных животных. Т-независимые антигены имеют относительно простое строение. Это крупные молекулы с молекулярной массой более 103 кДа, они поливалентны и имеют монотонно повторяющиеся последовательности с многочисленными однотипными эпитопами.

Т-независимые антигены обладают митогенным действием и способны индуцировать поликлональную реакцию. В качестве примера можно привести полимерную форму флагеллина (сократительный белок жгутиков бактерий), Л ПС, туберкулин, сополимеры D-аминокислот и др.

От Т-независимых антигенов следует отличать суперантигены. Это условный термин, введенный для обозначения группы веществ, в основном, микробного происхождения, которые могут неспецифически вызывать поликлональную реакцию. В организме в обход естественного процессинга антигена цельная молекула суперантигена способна вмешиваться в кооперацию антигенпрезентирующей клетки и Т-хелпера и нарушать распознавание «свой-чужой». Установлено, что молекула суперантигена самостоятельно связывается с межклеточным комплексом «антиген гистосовместимости II класса — Т-клеточный рецептор» и формирует ложный сигнал распознавания чужеродной субстанции. В процесс неспецифической активации одновременно вовлекается огромное количество Т-хелперов (до 20 % от общей массы и более), возникает гиперпродукция цитокинов, за которой следует поликлональная активация лимфоцитов, их массовая гибель вследствие апоптоза и развитие вторичного функционального иммунодефицита. На сегодняшний день свойства суперантигена обнаружены у стафилококкового энтеротоксина, белков вирусов Эпштейна—Барр, бешенства, ВИЧ и некоторых других микробных субстанций.