- •Органы иммунной системы
- •Физические факторы защиты
- •Физиологические факторы защиты
- •Интерфероны.
- •Ифн активирует гены, некоторые из которых кодируют образование продуктов с прямым антивирусным действием — протеинкиназы и олигоаденилат синтетазы.
- •Клеточные факторы
- •Кислородзависимая мсф
- •Кислороднезависимая мсф
- •Б. Универсальными стимуляторами фагоцитов являются опсонизированные частицы и иммунные комплексы.
- •Клетки иммунной системы
- •Гамма-дельта t-клетки
- •12) Антигены групп крови человека
- •13) Антигенная специфичность и антигенное строение бактерий.
- •Основными видами бактериальных антигенов являются:
- •Антигены вирусов
- •14) Аггистосовместимости
- •Антигены гистосовместимости.
- •Гиперчувствительность I (немедленного) типа
- •Гиперчувствительность III типа
- •Гиперчувствительность IV (замедленного) типа
- •Отторжение трансплантата
- •Клинические типы отторжения трансплантата
- •Иммуноглобулин d ( IgD ).
- •21) Живые вакцины
- •Ослабленные ( аттенуированные ) вакцины
- •Генно-инженерные ( рекомбинантные ) вакцины.
- •Векторные вакцины
- •Синтетические вакцины
- •Молекулярные вакцины. Анатоксины.
- •Конъюгированные вакцины
- •22) Сывороточные иммунные препараты.
- •Иммуноглобулины
- •Ориентировочная реакция агглютинации (ра)
- •Реакция непрямой (пассивной) гемагглютинации (рнга, рпга)
- •Учет результатов рнга, поставленной с целью обнаружения ботулотоксина.
- •Реакция торможения гемагглютинации (ртга).
- •Реакции преципитации
- •Определение токсигенности коринебактерий дифтерии в реакции преципитации в агаре.
- •Реакции нейтрализации
- •Реакция связывания комплемента (рск)
- •Иммуноферментный анализ (ифа)
- •30) Иммунный статус – это структурное и функциональное состояние иммунной системы индивидуума, определяемое комплексом клинических и лабораторных иммунологических показателей.
- •33) Иммунодефицит
- •35) Иммунологическая толерантность
- •36) Основные принципы иммунотерапии
- •Иммуномодуляторы микробного происхождения
- •Основные принципы применения иммуномодуляторов:
Генно-инженерные ( рекомбинантные ) вакцины.
Генно-инженерные вакцины содержат Аг возбудителей, полученные с использованием методов генной инженерии, и включают только высокоиммуногенные компоненты, способствующие формированию защитного иммунитета.
Возможны несколько вариантов создания генно-инженерных вакцин.
• Внесение генов вирулентности в авирулентные или слабовирулентные микроорганизмы.
• Внесение генов вирулентности в неродственные микроорганизмы с последующим выделением Аг и его использованием в качестве иммуногена.
• Искусственное удаление генов вирулентности и использование модифицированных организмов в виде корпускулярных вакцин.
Векторные вакцины
Ряд современных противовирусных вакцин сконструирован путём введения генов, кодируюших основные Аг патогенных вирусов и бактерий в геном вируса осповакцины (HBsAg вируса гепатита В) и непатогенных для человека сальмонелл (HBsAg вируса гепатита В и Аг токсина столбнячной палочки). Другим примером служит введение генов возбудителя туберкулёза в вакцинный штамм БЦЖ, что придаёт ему большую активность в качестве дивергентной вакцины. Такие препараты известны как векторные вакцины.
Для активной иммунопрофилактики гепатита В также предложена вакцина, представляющая собой HBsAg вируса. Его получают из дрожжевых клеток, в которые введён вирусный ген (в форме плазмиды), кодирующий синтез HBsAg. Препарат очищают от дрожжевых белков и используют для иммунизации. В качестве метода более быстрой и дешёвой наработки бактериальных экзотоксинов в настоящее время разработаны методы их получения при помощи неприхотливых микроорганизмов, в геном которых искусственно внесены гены токсинообразования (например, в виде плазмид).
Селективное удаление генов вирулентности открывает широкие перспективы для получения стойко аттенуированных штаммов шигелл, токсигенных кишечных палочек, возбудителей брюшного тифа, холеры и других диареегенных бактерий. Возникает возможность создания поливалентных вакцин для профилактики кишечных инфекций, вводимых внутрь. Другим важным направлением выступает возможность получения аттенуированных штаммов возбудителя туберкулёза человека и их использования в качестве вакцин.
Синтетические вакцины
Принцип конструирования вакцин включает синтез или выделение нуклеиновых кислот или полипептидных последовательностей, образующих Aг-детерминанты, распознаваемых нейтрализующими AT. Непременные компоненты таких вакцин — сам Аг, высокомолекулярный носитель (винилпирролидон или декстран) и адъювант (повышающий иммуногенность вакцин). Подобные препараты наиболее безопасны в плане возможных поствакцинальных осложнений, но их разработке мешают две проблемы.
Во-первых, не всегда имеется информация об идентичности синтетических эпитопов естественным Аг.
Во-вторых, низкомолекулярные синтетические пептиды обладают низкой иммуногенностью, что приводит к необходимости подбора соответствующих адъювантов.
С другой стороны, введение синтетических вакцин в комбинации с адъювантами и иммуномодуляторами перспективно у лиц с нарушениями иммунного статуса. Особые перспективы имеет использование нуклеиновых кислот для иммунопрофилактики инфекций, вызываемых внутриклеточными паразитами. В эксперименте показано, что иммунизация организма РНК и ДНК многих вирусов, малярийного плазмодия или возбудителя туберкулёза приводит к развитию стойкой невосприимчивости к заражению.
