
- •1. Введение
- •2. Метрология
- •2.1. Метрология и ее разделы
- •2.2. Исторические основы развития метрологии
- •2.3. Физические величины
- •2.4. Измерительные сигналы
- •2.5. Единицы физических величин
- •Множители и приставки, используемые для образования наименований и обозначений десятичных кратных и дольных единиц си
- •2.6. Измерение физических величин
- •2.6.1. Виды измерений
- •2.6.2. Методы измерений
- •2.6.3. Погрешность измерений
- •2.6.3.1. Понятие о шкалах измерений
- •2.6.3.2. Основной постулат метрологии
- •2.6.3.3. Фактор погрешностей
- •2.6.3.4. Классификация и краткая характеристика
- •2.7. Средства измерительной техники
- •2.7.1. Классификация средств измерительной техники
- •2.7.2. Структура средств измерений
- •2.7.3. Характеристики средств измерений
- •2.7.3.1. Метрологические характеристики
- •2.7.3.2. Погрешности средств измерений
- •2.7.3.3. Класс точности средств измерений
- •2.7.3.4. Неметрологические характеристики средств измерений
- •2.8. Исключение погрешностей
- •2.8.1. Исключение систематических погрешностей
- •2.8.2. Исключение случайных погрешностей
- •2.8.3. Оценивание погрешностей результатов измерений
- •2.8.3.1. Прямое многократное измерение
- •2.8.3.2. Прямое однократное измерение
- •2.8.3.3. Косвенные измерения
- •2.9. Обеспечение единства измерений
- •2.9.1. Метрологические службы
- •2.9.2. Государственный метрологический контроль
- •2.9.3. Техническая база обеспечения единства измерений
- •2.10. Международные метрологические организации
- •Библиографический список
- •Н а Восточно-Сибирской железной дороге – филиале оао «ржд»
2.6.3.3. Фактор погрешностей
В общем случае компонентами измерительной цепи являются:
исследуемый объект;
средства измерений;
окружающая среда;
экспериментатор.
Перечисленные компоненты влияют друг на друга и на результат измерения.
Поэтому при подготовке и проведении измерений необходимо учитывать влияние всех перечисленных компонент, а также метода измерений на результат измерений.
Объект измерений должен быть изучен. Перед измерением необходимо представить себе модель исследуемого объекта. Чем точнее модель соответствует исследуемому объекту, тем точнее измерительный эксперимент. Причем, по мере получения измерительной информации модель исследуемого объекта может уточняться и изменяться.
Средства измерений вносят основную долю в образование погрешностей измерения. Это так называемые факторы инструментальных погрешностей. Факторы инструментальных погрешностей – следствие несовершенства принципа действия и конструктивно-технологического исполнения средств измерения. Это, например, трение в опорах электромеханических измерительных преобразователей, остаточная намагниченность ферромагнитного сердечника электромагнитного прибора, погрешность квантования и др.
Окружающая среда определяет факторы погрешностей установки. Факторы погрешностей установки – это отклонение условий применения средств измерений от условий их градуирования, или отклонение от оптимальных условий, на применение в которых средство измерения рассчитано. Например, отклонение положения стрелочного прибора от предусмотренного горизонтального, вследствие чего появляются погрешности от неполной уравновешенности подвижной части. Это, например, отклонение влияющих величин (температуры, параметров электромагнитных полей, влажности и пр.), неинформативных параметров входного сигнала (частоты, коэффициента, формы и пр.) от нормальных или номинальных значений.
Факторы личных погрешностей – это психофизиологические особенности экспериментатора. Они вносят в процессе измерения элемент субъективизма. У человека может быть недостаточная острота зрения, он может уставать, может заболеть, у него может быть склонность завышать или занижать результаты отсчета по шкале и т.д. Элемент субъективизма зависит от квалификации экспериментатора, его психофизиологического состояния, соблюдения эргономических требований. К измерениям должны допускаться лица, прошедшие специальную подготовку, имеющие соответствующие знания и практические навыки. В ответственные моменты их действия должны быть строго регламентированы.
Факторы погрешностей метода – это следствие несовершенства теории метода измерений, использования приближенных формул, неполной согласованности характеристик средств измерений с характеристиками исследуемого объекта.
Принимая во внимание все перечисленные факторы, нельзя ожидать, что, реализовав процесс измерения некоторой физической величины, мы получим её истинное значение.
2.6.3.4. Классификация и краткая характеристика
погрешностей измерений
В зависимости от характера изменения погрешностей различают систематические и случайные погрешности.
Систематическая погрешность измерения (систематическая погрешность) – составляющая погрешности результата измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины.
В зависимости от характера измерения систематические погрешности подразделяют на постоянные, прогрессивные, периодические и погрешности, изменяющиеся по сложному закону.
Постоянные погрешности – погрешности, которые длительное время сохраняют свое значение, например, в течение времени выполнения всего ряда измерений. Они встречаются наиболее часто.
Прогрессивные погрешности – непрерывно возрастающие или убывающие погрешности. К ним относятся, например, погрешности вследствие износа измерительных наконечников, контактирующих с деталью при контроле ее прибором активного контроля.
Периодические погрешности – погрешности, значение которых является периодической функцией времени или перемещения указателя измерительного прибора.
Погрешности, изменяющиеся по сложному закону, происходят вследствие совместного действия нескольких систематических погрешностей.
Случайная погрешность измерения (случайная погрешность) – составляющая погрешности результата измерения, изменяющаяся случайным образом при повторных измерениях, проведенных с одинаковой тщательностью, одной и той же физической величины.
Таким образом, можно записать, что абсолютная погрешность:
,
где
–
систематическая составляющая;
–
случайная
составляющая.
В зависимости от изменения измеряемой величины погрешности разделяют на аддитивные и мультипликативные. Аддитивные погрешности не зависят от измеряемой величины. Мультипликативные – изменяются пропорционально измеряемой величине. Соотношение аддитивной и мультипликативной погрешностей измерений можно представить в виде рисунка.
а – предельное значение аддитивной погрешности, bХ – предельное значение мультипликативной погрешности.
Рис. 2.2. Соотношение аддитивной и мультипликативной погрешностей
Таким образом, можно записать для этого случая:
Инструментальная погрешность измерения (инструментальная погрешность) – составляющая погрешности измерения, обусловленная погрешностью применяемого средства измерений.
Погрешность метода измерений (погрешность метода) – составляющая систематической погрешности измерения, обусловленная несовершенством принятого метода измерений. Вследствие упрощений, принятых в уравнениях для измерений, нередко возникают существенные погрешности, для компенсации действия которых следует вводить поправки. Погрешность метода иногда называют теоретической погрешностью.
Иногда погрешность метода может проявляться как случайная.
Погрешность измерения из-за изменений условий измерения – составляющая систематической погрешности измерения, являющаяся следствием неучтенного влияния отклонения в одну сторону какого-либо из параметров, характеризующих условия измерений, от установленного значения. Этот термин применяют в случае неучтенного или недостаточно учтенного действия той или иной влияющей величины (температуры, атмосферного давления, влажности воздуха, напряженности магнитного поля, вибрации и др.); неправильной установки средств измерений, нарушения правил их взаимного расположения и др.
Субъективная погрешность измерения (субъективная погрешность) – составляющая систематической погрешности измерений, обусловленная индивидуальными особенностями оператора. Встречаются операторы, которые систематически опаздывают (или опережают) снимать отсчеты показаний средств измерений. Иногда субъективную погрешность называют личной погрешностью или личной разностью.
Статическая погрешность измерений (статическая погрешность) – погрешность результата измерений, свойственная условиям статического измерения.
Динамическая погрешность измерений (динамическая погрешность) – погрешность результата измерений, свойственная условиям динамического измерения.
Промах – погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда. Иногда вместо термина "промах" применяют термин грубая погрешность измерений.
Предельная погрешность измерения в ряду измерений (предельная погрешность) – максимальная погрешность измерения (плюс, минус), допускаемая для данной измерительной задачи.