Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка_заочка_2013 (1).docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
762.3 Кб
Скачать

3.3. Приложение определенного интеграла.

Справочный материал:

  • площадь плоской фигуры, ограниченной линиями:

  • объём тела с площадью поперечного сечения:

.

Примеры.

  1. Построить схематический чертеж и найти площадь фигуры, ограниченной линиями :

Найдем точки пересечения линий.

Раздел 4. Теория вероятностей

и математическая статистика

Случайные величины и их характеристики

Случайной величиной называется числовая функция, определенная на пространстве элементарных исходов , которая каждому элементарному исходу ставит в соответствие число .

Условимся в дальнейшем, как правило, случайные величины обозначать греческими буквами: , , …, а принимаемые ими значения – строчными латинскими (с индексами или без): , и т.д.

Случайные величины делятся на дискретные и непрерывные.

Случайная величина называется дискретной, если значения, которые может принимать данная случайная величина, образуют дискретное (конечное или бесконечное) множество чисел , , …, , …

Под непрерывной случайной величиной будем понимать величину, значения которой, заполняют конечный или бесконечный промежуток числовой оси .

Например, число студентов на лекции – дискретная случайная величина, продолжительность лекции – непрерывная.

1.6. Дискретная случайная величина и ее числовые характеристики

Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.

Закон распределения дискретной случайной величины обычно задается рядом распределения, который представляется в виде таблицы:

где в первой строке перечислены все возможные значения случайной величины, а во второй – соответствующие им вероятности , удовлетворяющие соотношению .

Закон распределения может быть задан графически в виде многоугольника распределения вероятностей, т.е. в виде ломаной, соединяющей точки с координатами для .

Математическим ожиданием или средним значением дискретнойслучайной величины называется сумма произведений всех ее возможных значений на соответствующие им вероятности:

. (1)

Дисперсией случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания, т.е.

. (2)

Для вычисления дисперсии на практике бывает удобнее использовать другую формулу, которую можно получить из формулы (8) с помощью простых преобразований:

. (3)

Средним квадратическим отклонением или стандартным отклонением случайной величины называется корень квадратный из ее дисперсии:

.

Раздел 5. Основы теории комплексных чисел

Сначала вспомним «обычные» школьные числа. В математике они называются множеством действительных чисел и обозначаются буквой   (в литературе, рукописях заглавную букву «эр» пишут жирной либо утолщённой). Все действительные числа сидят на знакомой числовой прямой:

Компания действительных чисел очень пёстрая – здесь и целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой обязательно соответствует некоторое действительное число.

Комплексным числом   называется число вида  , где   и   – действительные числа,   – так называемая мнимая единица. Число   называется действительной частью ( )комплексного числа  , число   называется мнимой частью ( ) комплексного числа  .

 – это ЕДИНОЕ  ЧИСЛО, а не сложение. Действительную и мнимую части комплексного числа, в принципе, можно переставить местами:   или переставить мнимую единицу:   – от этого комплексное число не изменится. Но стандартно комплексное число принято записывать именно в таком порядке:  

Чтобы всё было понятнее, сразу приведу геометрическую интерпретацию. Комплексные числа изображаются на комплексной плоскости:

Как упоминалось выше, буквой   принято обозначать множество действительных чисел. Множество комплексных чисел принято обозначать «жирной» или утолщенной буквой  . Поэтому на чертеже следует поставить букву  , обозначая тот факт, что у нас комплексная плоскость.

Комплексная плоскость состоит из двух осей:  – действительная ось  – мнимая ось

Построим на комплексной плоскости следующие комплексные числа:

Рассмотрим следующие комплексные числа:  ,  ,  . Вы скажете, да это же обыкновенные действительные числа! И будете почти правы. Действительные числа – это частный случай комплексных чисел. Действительная ось   обозначает в точности множество действительных чисел  , то есть на оси  сидят все наши «обычные» числа. Более строго утверждение можно сформулировать так: Множество действительных чисел   является подмножеством множества комплексных чисел  .

Числа  ,  ,   – это комплексные числа с нулевой мнимой частью.

Числа  ,  ,   – это, наоборот, чисто мнимые числа, т.е. числа с нулевой действительной частью. Они располагаются строго на мнимой оси  .

В числах  ,  ,  ,   и действительная и мнимая части не равны нулю. Такие числа тоже обозначаются точками на комплексной плоскости, при этом, к ним принято проводить радиус-векторы из начала координат (обозначены красным цветом на чертеже). Радиус-векторы к числам, которые располагаются на осях, обычно не  чертят, потому что они сливаются с осями.