
Билет15
Зависимость константы скорости от температуры . Уравнение Аррениуса. В качестве приближенного правила можно запомнить, что скорость любой химической реакции становится вдвое больше при повышении температуры на каждые 10 К. Это правило позволяет предположить, что между скоростью реакций и температурой есть зависимость.Точное соотношение межд скоростью реакций и температурой впервые установил шведский химик Аррениус 1889 г. Это соотношение, получившее название уравнения Аррениуса, имеет вид
где к-константа скорости реакции; А - постоянная, характеризующая каждую конкретную реакцию (константа Аррениуса); Ea-еще одна постоянная, характерная дл каждой реакции и называемая энергией активации; Л-газовая постоянная и Т-абссолютная температура в кельвинах. Отметим, что это уравнение связывает температур не со скоростью реакции, а с константой скорости.
В логарифмической форме уравнение Аррениуса приобретает вид
Если перейти от натуральных логарифмов к десятичным, последнее соотношенв сводится к виду
Именно
эта форма уравнения Аррениуса наиболее
употребительна.Для определения констант
А и Еа, характеризующих конкретную
реакцию, строя график зависимости Ig к
от величины 1/Т. (Напомним, что температура
должна быт выражена в абсолютной шкале.)
Тангенс угла наклона графика к оси
абсцисс дае величину Ea/2,303RT. Для определения
константы Аррениуса А следует подставить
уравнение Аррениуса все остальные
известные значения.
Энергия активации— минимальное количество энергии, которое требуется сообщить системе (в химии выражается в джоулях на моль), чтобы произошла реакция. Термин введён Сванте Августом Аррениусом в 1889. Типичное обозначение энергии реакции Ea. Энергия активации в элементарных реакциях, минимальная энергия реагентов (атомов, молекул и других частиц), достаточная для того, чтобы они вступили в хим. реакцию, т. е. для преодоления барьера на поверхности потенциальной энергии, отделяющего реагенты от продуктов реакции.
Билет16
Понятие о механизмах химических реакций. Механизм реакции – детальное ее описание с учетом всех промежуточных стадий и промежуточных веществ, природы взаимодействия реагирующих частиц, характера разрыва связей, изменения энергии химической системы на всем пути ее перехода из исходного в конечное состояние.Цель изучения механизма реакции – возможность управлять ходом реакции, ее направлением и эффективностью. Реакции, протекающие в одну стадию, называют простыми (элементарными) реакциями, а реакции, включающие несколько стадий – сложными. Многие органические реакции являются сложными и идут в несколько элементарных стадий (последовательных или параллельных). Общая скорость сложной химической реакции определяется скоростью ее наиболее медленной (лимитирующей) стадии. Установление механизма органических реакций — задача физической органической химии. Она очень сложна даже для описания сравнительно простых реакций. Для ее решения необходимо на современном уровне знаний иметь полное представление о промежуточных стадиях и промежуточных веществах (интер- медиатах), природе взаимодействия реагирующих частиц, характере разрыва и образования связей, изменении энергии химической системы на всем пути ее перехода из исходного в конечное состояние. Механизм должен согласовываться со стереохимией и кинетикой процесса.
Общая скорость сложной химической реакции определяется (лимитируется) скоростью ее наиболее медленной стадии, а скорость составляющих элементарных реакций — их энергией активации Еа. Последняя необходима для осуществления эффективного столкновения молекул, приводящего к взаимодействию. Ее можно определить также как энергию, необходимую для достижения системой переходного состояния, иначе называемого активированным комплексом, превращение которого в продукты реакции происходит уже самопроизвольно. Чем меньше величина энергии активации реакции, тем выше ее скорость. Использование катализатора приводит к существенному понижению величины энергии активации и соответственно увеличению скорости химической реакции. Катализатор не влияет на положение равновесия между исходными и конечными продуктами, т.е. на изменение свободной энергии процесса. Для реакций in vivo особенно важен ферментативный катализ, который осуществляется при помощи ферментов (энзимов) — высокоспецифичных биокатализаторов белковой природы. На рис. 4.1 приведены примеры энергетических диаграмм для каталитических и некаталитических процессов.В принципе все реакции обратимы, однако на практике многие из них рассматриваются как практически необратимые. Некоторые органические реакции могут приводить к образованию не одного, а нескольких изомерных соединений, скорость образования которых обычно бывает неодинаковой.При проведении реакции в сравнительно мягких условиях в таких случаях практически полностью получается изомер, скорость образования которого наибольшая, т. е. имеет место кинетически контролируемая реакция.В более жестких условиях (повышенная температура, достаточная длительность процесса) в качестве конечного продукта образуется изомер, отличающийся (по сравнению с остальными) большей термодинамической устойчивостью, т. е. осуществляется термодинамически контролируемая реакция.Знание теоретических закономерностей протекания реакций закладывает фундамент для обобщения разрозненных опытных данных, помогает увидеть сходство и отличие между разнообразными химическими, а также биохимическими реакциями, наконец, помогает управлять ходом того или иного процесса.