
- •Потребители электроэнергии нпс.
- •Потребители электроэнергии компрессорных станций.
- •Потребители электроэнергии нефтебаз.
- •Группа взрывоопасной смеси.
- •Категории взрывоопасных парогазовоздушных смесей.
- •Классификация взрывоопасных зон.
- •Классификация пожароопасных зон.
- •Категории помещений, зданий и наружных установок по взрывопожарной и пожарной опасности
- •Категории электроприемников по надежности электроснабжения.
- •Обозначение степени защиты электрического оборудования.
- •Обозначение электрического оборудования по уровню взрывозащиты.
- •Обозначение электрического оборудования по виду взрывозащиты.
- •Причины аварийной остановки электродвигателей магистральных насосов
- •Электроснабжение нпс.
- •Основные направления снижения энергозатрат на транспорт нефти.
- •Понятие пожара
- •Основные параметры пожара
- •Зоны и стадии пожара
- •Классификация огнетушащих веществ
- •20. Способы и приемы прекращения горения
- •24. Охлаждение резервуаров
- •25. Подготовка и проведение пенной атаки
- •26. Особенности тушения резервуаров с использованием системы подслойного пожаротушения
- •27. Особенности откачки нефтепродуктов из резервуаров
- •28. Особенности проектирования систем пенного пожаротушения
- •29. Стационарные системы тушения пожаров воздушно-механической пеной средней кратности
- •30. Извещатели пожарные
- •34. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения
- •35. Водоснабжение нефтетранспортных предприятий
- •36. Санитарные правила для хозяйственно-питьевых водопроводов
- •37. Конструкция водозаборной скважины
- •38. Паспорт водозаборной скважины
- •39. Границы зон санитарной охраны источников питьевого водоснабжения
- •40. Водомерный узел
- •41. Водоподготовка на объектах нефтегазового хозяйства
- •42. Технологические схемы водоподготовки
- •43. Технология ультрофиолетового обеззараживания воды
- •Вопросы к зачету по курсу «Инженерные сети…»
Понятие пожара
Пожар представляет собой сложный физико-химический процесс, включающий помимо горения явления массо- и теплообмена, развивающиеся во времени и в пространстве. Эти явления взаимосвязаны и характеризуются параметрами пожара: скоростью выгорания, температурой и т.д. и определяются рядом условий, многие из которых носят случайный характер.
.
Основные параметры пожара
Концентрационные пределы распространения пламени, температурные пределы распространения пламени и ряд других параметров, которые являются производными от этих пределов.
Зоны и стадии пожара
Пространство, в котором развивается пожар, условно подразделяется на три зоны: горения, теплового воздействия и зона задымления.
Зоной горения называется часть пространства, в котором протекают процессы термического разложения или испарения горючих веществ и материалов (твердых, жидких, газов, паров) в объеме диффузионного факела пламени. Горение может быть пламенным (гомогенным) и беспламенным (гетерогенным).
Примером беспламенного горения может служить горение кокса, древесного угля, тление, например, войлока, торфа, хлопка и т.д.
Зона теплового воздействия примыкает к границам зоны горения. В этой части пространства протекают процессы теплообмена между поверхностью пламени, окружающими конструкциями и горючими материалами.
Под зоной задымления понимается часть пространства, примыкающего к зоне горения, в котором невозможно пребывание людей без средств защиты органов дыхания и в котором затрудняется ведение боевых действий подразделений пожарной охраны из-за недостатка видимости.
В процессе развития пожара различают три стадии: начальную, основную (развитую) и конечную.
Начальной стадии соответствует развитие пожара от источника зажигания до момента, когда помещение будет полностью охвачено пламенем.
Основной стадии развития пожара в помещении соответствует повышение среднеобъемной температуры до максимума.
На конечной стадии пожара завершается процесс горения и постепенно снижается температура.
Классификация огнетушащих веществ
охлаждающего действия (вода, твердый диоксид углерода и др.);
разбавляющего действия (негорючие газы, водяной пар, тонкораспыленная вода и т.п.);
изолирующего действия (воздушно-механическая пена различной кратности, сыпучие негорючие материалы и пр.);
ингибирующего действия (галоидированные углеводороды: бромистый метилен, бромистый этил, тетрафтордибромэтан, огнетушащие составы на их основе и др.).
20. Способы и приемы прекращения горения
Вид и характер выполнения боевых действий в определенной последовательности, направленных на создание условий прекращения горения, называется способом прекращения горения.
В зависимости от основного процесса, приводящего к прекращению горения, способы тушения можно разделять на четыре группы:
охлаждения зоны горения или горящего вещества;
разбавления реагирующих вещества;
изоляции реагирующих веществ от зоны горения;
химического торможения реакции горения.
Способы прекращения горения, основанные на принципе охлаждения реагирующих веществ или горящих материалов, заключаются в воздействии на них охлаждающими огнетушащими веществами; основанные на изоляции реагирующих веществ от зоны горения — в создании между зоной горения и горючим материалом или окислителем изолирующего слоя из огнетушащих материалов и веществ; основанные на разбавлении реагирующих веществ или химическом торможении реакции горения — в создании в зоне горения или вокруг нее негорючей газовой или паровой среды.
21. Механизм прекращения горения
Для охлаждения горящих материалов применяются жидкости, обладающие теплоемкостью. Для большинства горючих материалов применяется вода.
Попадая в зону горения, вода отнимает от горящих материалов и продуктов горения большое количество тепла. При этом она частично испаряется и превращается в пар, увеличиваясь в объеме в 1700 раз (из 1 л воды при испарении образуется 1700 л пара), благодаря чему происходит разбавление реагирующих веществ, что само по себе способствует прекращению горения, а также вытеснению воздуха из зоны пожара.
Вода обладает высокой термической стойкостью. Ее пары только при температуре свыше 1700°С могут разлагаться на кислород и водород, усложняя тем самым обстановку в зоне горения. Большинство же горючих материалов горит при температуре, не превышающей 1300-1500°С и тушение их водой не опасно. Однако металлические магний, цинк, алюминий, титан и его сплавы, при горении создают в зоне горения температуру, превышающую термическую стойкость воды. Тушение их водой недопустимо.
Вода имеет низкую теплопроводность, что способствует созданию на поверхности горящего материала надежной тепловой изоляции. Это свойство в сочетании с предыдущими позволяет использовать ее не только для тушения, но и для защиты материалов от воспламенения.
Малая вязкость и несжимаемость воды позволяет подавать ее по рукавам на значительные расстояния и под большим давлением.
Наряду с этим у воды имеются и отрицательные свойства. Основной недостаток у воды как огнетушащего вещества заключается в том, что из-за высокого поверхностного натяжения (72,8-10"3 Дж/м2) она плохо смачивает твердые материалы и особенно волокнистые вещества.
Для устранения этого недостатка к воде добавляют поверхностно-активные вещества (ПАВ), или, как их еще называют — смачиватели
Вода имеет относительно большую плотность (при 4°С — 1г/см3, при 100°С — 0,958 г/см3), что ограничивает, а иногда и исключает ее применение для тушения нефтепродуктов
Вода с абсолютным большинством горючих веществ не вступает в химическую реакцию. Исключение составляют щелочные и щелочно-земельные металлы, при взаимодействии которых с водой выделяется водород. Их тушить водой нельзя
Для охлаждения отдельных видов горючих материалов кроме воды применяется твердый диоксид углерода. Это мелкая кристаллическая масса с плотностью г = 1,53 кг/м3, которая при нагревании переходит в газ, минуя жидкое состояние. Это позволяет тушить ею материалы, портящиеся от воздействия влаги. Кипит твердая углекислота (диоксид углерода) при температуре -78,5°С, и теплота ее испарения равна 573,6 Дж/кг. Эта цифра значительно меньше, чем у воды, однако скорость охлаждения горящих веществ достаточно высокая. Это объясняется большой разностью температур у углекислоты и на поверхности горящего материала, а также большой теплоемкостью углекислого газа.
Твердый диоксид углерода прекращает горение всех горючих веществ, за исключением металлического натрия и калия, магния и его сплавов. Он неэлектропроводен и не смачивает горючие вещества. Поэтому применяется для тушения электроустановок под напряжением, двигателей
Снизить температуру горящего слоя горючих веществ и тем самым прекратить горение можно перемешиванием самих горящих веществ
Путем перемешивания можно прекратить горение и горючих жидкостей. Очевидно, что в процессе горения жидкости прогреваются в глубину. Первоначально толщина прогретого слоя не превышает нескольких сантиметров, и нижние слои горячей жидкости в резервуаре имеют первоначальную температуру, т.е. температуру хранения. Если перемешать жидкость, то можно охладить верхний ее слой и тем самым снизить скорость горения (рис. 2.5). При определенных условиях степень охлаждения может оказаться такой, что температура верхнего слоя жидкости снизится ниже температуры воспламенения, и горение прекратится. Опытами и практикой доказано, что такое явление может наступить в случае, когда температура вспышки горючей жидкости не менее чем на 5°С выше температуры хранения ее в данных условиях. Например, при температуре воздуха 30°С можно прекратить горение перемешиванием жидкости в резервуаре с температурой вспышки 35°С и более. Но при этом должно быть выполнено дополнительное условие — интенсивное охлаждение стенок горящего резервуара
В настоящее время для тушения различных горючих веществ все более широкое применение находят огнетушащие порошковые составы. Они не токсичны, не оказывают вредного воздействия на материалы, не электропроводны и не замерзают.
Механизм прекращения горения порошками заключается в основном в изоляции горящей поверхности от зоны горения, т.е. в прекращении доступа горючих паров и газов в зону реакции. Основным критерием прекращения горения порошковым составом является удельный расход
22. Особенности горения ЛВЖ и ГЖ в резервуарах, сжиженых углеводородных газов
Пожар в резервуаре начинается, в большинстве случаев, со взрыва паровоздушной смеси, находящейся под его крышей. В результате взрыва происходит полный срыв или частичное разрушение крыши резервуара и загорание жидкости на всей свободной поверхности. Сила взрыва, как правило, большая у тех резервуаров, где имеется большое газовое пространство, заполненное смесью паров нефтепродукта с воздухом (низкий уровень жидкости).
В зависимости от силы взрыва в вертикальном металлическом резервуаре может наблюдаться следующая обстановка:
-крыша срывается полностью, ее отбрасывает в сторону на расстояние 20-30 м; жидкость горит на всей площади резервуара
-крыша несколько приподнимается, открывается полностью или частично, затем погружается в горящую жидкость
-крыша деформируется и образует небольшие щели в местах крепления к стенке резервуара, а также в сварных швах самой крыши
-У цилиндрических горизонтальных резервуаров при взрыве чаще всего происходит разрыв одной из торцевых стенок, что нередко приводит к срыву резервуара с фундамента, его опрокидыванию и разливу жидкости
23. вскипание и выброс нефтепродукта при пожаре в резервуаре
Пожары нефтепродуктов с температурой кипения выше 100 0С в резервуарах могут сопровождаться вскипанием и выбросом.
Вскипание горючего происходит из-за наличия в нем взвешенной воды, которая при прогреве горящей жидкости выше 100 °С испаряется, вызывая вспенивание нефтепродукта (рис. 12). Вскипание может произойти примерно через 60 минут при содержании влаги в нефтепродукте более 0,3 %. Вскипание может также произойти в начальный период пенной атаки при попадании раствора пенообразователя в прогретый слой горючего, независимо от содержания в нем воды. Вскипание увеличивает температуру пламени до 1500°С, высота пламени увеличивается в 2-3 раза, тепловой поток возрастает в несколько раз за счет полного сгорания нефтепродукта в зоне горения
Выброс нефтепродукта может произойти при достижении температурой выше кипения воды слоя водяной подушки. Выброс можно объяснить следующим образом. Температура прогретого слоя нефтепродуктов может достигать 300 °С. Этот слой, соприкасаясь с водой, нагревает ее до температуры значительно большей, чем температура кипения. При этом происходит бурное вскипание воды с выделением большого количества пара, который выбрасывает находящуюся над водой нефть за пределы резервуара (нефть может выбрасываться на расстояние 100 м и более).