
- •1 Общая часть
- •1.1 Описание технологического процесса мазутонасосной станции
- •1.2 Выбор рода тока
- •2 Специальная часть
- •2.1 Расчёт токов короткого замыкания
- •2.2 Выбор автоматического выключателя
- •2.3 Выбор питающего кабеля
- •2.4 Расчет электрического
- •3 Организация производства
- •3.1 Эксплуатация и ремонт
3 Организация производства
3.1 Эксплуатация и ремонт
При эксплуатации мазутного хозяйства должен обеспечиваться:
1) бесперебойный и своевременный разогрев и слив мазута из железных цистерн, зачистка остатков мазута в цистернах, сдача цистерны в установленные сроки;
2) контроль качества и количества поставляемого мазута;
3) своевременная и бесперебойная подготовка, и подача мазута в котельный цех;
4) хранение установленного запаса мазута.
Основные сведения и физико-химическая характеристика мазута.
1) Вязкость – степень текучести жидкого топлива, измеряется прибором вискозиметром. Сравнивается время истечения из вискозиметра 200 м3, мазута нагретого до 500С, со временем истечения 200 м3 воды, нагретой до 200С. Для высоковязких мазутов, не обладающих достаточной текучестью, вязкость определяется при температуре 800С. Для достижения хорошей текучести, при сливе, транспортировки по трубам, распыления в форсунках, мазут необходимо разогревать.
2) Температура вспышки – температура, при которой выделяемые при нагреве пары мазута образуют с окружающим воздухом смесь, вспыхивающую при поднесении к ней пламени. Она характеризирует пожарную опасность жидкого топлива. Поэтому запрещается нагревать мазут до температуры близкой к температуре вспышки.
3) Взрывоопасность – нефтяные пары в определенной концентрации с воздухом образуют взрывоопасные смеси и при соприкосновении с пламенем, электрической искрой может произойти взрыв. Поэтому все работы в мазутно-насосном хозяйстве должны производиться со строгим соблюдением правил противопожарной безопасности и техники безопасности.
4) Температура застывания – температура, при которой мазут застывает на столько, что при наклоне пробирки под углом 45градусов уровень его остается неизменным в течение 1 минуты.
5) Вода и механические примеси снижают теплоту сгорания топлива экономические показатели котельных агрегатов. При сгорании сернистых мазутов, вода способствует коррозии металла. Механические примеси вызывают быстрое засорение и износ фильтров, форсунок и арматуры.
6) Испаряемость – при испарении мазут обращается в пар. Для предотвращения потери легковоспламеняющихся фракций, мазут транспортируют и хранят в закрытых цистернах и резервуарах.
7) Токсичность – отравления нефтяными парами от вдыхания при ремонте и очистке резервуаров, а также в недостаточно вентилируемых помещениях мазутного хозяйства.
8) Электризация – при движении жидкого топлива в трубопроводах, насосах, арматуре, гибких шлангах образуется разряд статистического электричества, появляющегося в результате частичного перехода энергии трения в эконометрическую. Эти разряды достигают высокого потенциала и могут вызвать взрыв жидкого топлива.
9) Стабильность – используемый мазут не является стабильным по своему составу. При его хранении в резервуарах появляются осадки, которые необходимо периодически удалять и производить очистку резервуаров не реже 1 раза в 15 лет.
Критерии режимов работы мазутонасосной следующие:
1) Минимальная температура в мазутобаках, 0С 74
2) Максимальная температура в мазутобаках, 0С 90
3) Максимальная температура мазута в котельный цех:
максимальная, 0С 100
минимальная, 0С 76
4) Нормальная работа двигателей, 0С 70
5) Давление насосов 1-го подъёма, кгс/см2
наименьшее 1,5
наибольшее 8,0
6) Давление насосов 2-го подъёма, кгс/см2
наименьшее 15
нормальное 18-25
наибольшее 35
Для пуска, регулирования и остановки электродвигателей насосов, а также для управления электрифицированными вспомогательными механизмами мазутонасосные станции имеют электрическое хозяйство, основными элементами которого являются силовые трансформаторы, масляные выключатели, разъединители, изоляторы, токоведущие части, силовые кабели, измерительные трансформаторы и предохранители.
Силовой трансформатор представляет собой электромагнитный аппарат, в котором переменный ток одного напряжения преобразуется в переменный ток другого напряжения. Трансформаторы, питающие энергией электродвигатели силовых установок, называются силовыми в отличие от трансформаторов тока и напряжения, применяемых для снижения измеряемых электрических величин до пределов измерения приборов и питания вспомогательных цепей пониженного напряжения.
Номинальные мощности силовых трансформаторов определяются соответствующими стандартами. При выборе числа трансформаторов учитывают класс надежности действия насосной станции и степень ответственности нагрузок, разделяемых на категории в соответствии с Правилами устройства электроустановок.
Силовые трансформаторы устанавливают в отдельных помещениях, пристроенных к зданию мазутонасосной станции, или на открытых площадках, располагаемых в непосредственной близости от него.
В качестве основных агрегатов, включающих и отключающих трехфазные электродвигатели переменного тока мощностью до 75 кВт и напряжением до 500 В нормальном режиме их работы, используют магнитные пускатели серий ПА и ПМЕ.
Привод подвижных контактов масляных выключателей обоих типов может быть ручным, механическим (пружинным, пневматическим или пневмогидравлическим) и электромагнитным. Выключатели выпускают подвесными и крепят либо непосредственно к ограждающей стене здания, либо к рамным конструкциям, либо монтируют на тележках.
Для отключения от сети высокого напряжения различных аппаратов, приборов или отдельных участков цепи применяют разъединители, в частности, до и после каждого масляного выключателя обязательно должны быть установлены разъединители, чтобы можно было отключать масляный выключатель от сети на время осмотра и ремонта.
Промышленностью выпускаются разъединители различных типов для внутренней и наружной установки.
Разъединители внутренней установки для номинальных токов до 1000 А обычно бывают трехфазными.
Привод разъединителей, применяемых в электрических схемах мазутонасосных станций, как правило, ручной.
Необходимой принадлежностью каждой электрической цепи являются сборные шины, к которым энергия подводится от понизительного силового трансформатора или фидера распределительной сети и от которых она распределяется между приемниками и контрольно-измерительными приборами.
Сборные шины изготавливают из меди, алюминия или стали. Для лучшего охлаждения шины изготавливают прямоугольного сечения в виде полос, укрепленных шинодержателями на ребро или плашмя на опорных изоляторах.
Для соединения различных элементов электрического хозяйства мазутонасосной станции применяют силовые кабели.
Измерительные трансформаторы (напряжения и тока) служат для преобразования энергии, регистрируемой измерительными приборам (вольтметрами, амперметрами и т. д.) и питающей реле и вспомогательные цепи. Трансформатор напряжения устанавливают в сети 380 В и выше. В цепях высокого напряжения подключение вольтметра, счетчиков, реле и т. д. возможно только через трансформатор напряжения. С высоковольтной стороны обмотка такого трансформатора рассчитывается на напряжение сети, с низковольтной стороны обмотка имеет напряжение 110 и 220 В.
Амперметры и последовательные обмотки ваттметров и счетчиков энергии подключают к силовой сети высокого напряжения через трансформаторы тока, уменьшающие силу тока в обмотках указанных приборов.
Для защиты электрической цепи от токов чрезмерной силы в цепь включают предохранители, которые при превышении допустимой максимальной величины тока прерывают цепь. Плавкие вставки этих предохранителей подбирают так, чтобы они беспрепятственно пропускали ток нормальной силы, а при перегрузках расплавлялись и разрывали цепь раньше, чем ток перегрузки сможет повредить приборы или электродвигатель.
При эксплуатации асинхронной машины постепенно разрушается изоляция обмоток в результате ее нагрева, воздействия механических усилий от вибрации, динамических сил при пусках и переходных процессах, центробежных сил при вращении, влияния влаги и агрессивных сред, загрязнения различной пылью.
Необратимые изменения структуры и химического состава изоляции называют старением, процесс ухудшения свойств изоляции в результате старения — износом.
Главной причиной выхода из строя изоляции машин низкого напряжения являются температурные воздействия. При температурном расширении изоляционных материалов ослабляется их структура, возникают внутренние механические напряжения. Тепловое старение изоляции делает ее уязвимой для механических воздействий.
При потере механической прочности и эластичности изоляция не способна противостоять обычным условиям вибрации или ударам, проникновению влаги и неодинаковым тепловым расширениям меди, стали и изоляционных материалов. Усадка изоляции от воздействия теплоты приводит к ослаблению креплений катушек, клиньев, пазовых прокладок и других крепежных конструкционных деталей, что способствует повреждению обмотки при относительно слабых механических воздействиях. В начальный период эксплуатации пропиточный лак хорошо цементирует обмотку, но вследствие теплового старения лака цементация ухудшается и действие вибрации становится более ощутимым.
В процессе эксплуатации обмотка асинхронного двигателя может загрязняться пылью из окружающего воздуха, маслом из подшипников, угольной пылью при работе щеток. В рабочих помещениях металлургических и угольных предприятий, прокатных, коксовых и других цехов пыль настолько мелка и легка, что проникает внутрь машины, в такие места, куда попадание ее, казалось бы, невозможно. Она образует проводящие мостики, которые могут вызвать перекрытие или пробой на корпус.
Наружную поверхность машины и доступные внутренние части в процессе технического обслуживания очищают от пыли сухой салфеткой, волосяной щеткой или пылесосом.
При текущем ремонте обмоток машину разбирают. Обмотки осматривают, продувают сухим сжатым воздухом и при необходимости протирают салфетками, смоченными в бензине. При осмотре проверяют надежность крепления лобовых частей, клиньев и бандажей. Устраняют обнаруженные неисправности. Ослабленные или оборванные бандажи на лобовых частях статорных обмоток из круглого провода срезают и заменяют их новыми из стеклянных или лавсановых шнуров или лент.
Если покрытие обмотки находится в неудовлетворительном состоянии, то обмотку сушат и покрывают слоем эмали. Покрывать обмотку толстым слоем эмали не рекомендуется, так как утолщенный слой ухудшает охлаждение машины. Качество проведенного ремонта проверяют замером сопротивления изоляции до и после ремонта.
Короткозамкнутые обмотки асинхронных двигателей при текущем ремонте, как правило, не ремонтируют, а только осматривают. При обнаружении неисправностей роторы отправляют в капитальный ремонт.
Состояние электродвигателей, их пускорегулирующих устройств и защиты должно обеспечивать их надежную работу при пуске и в рабочих режимах.
Отклонение напряжения от номинального значения, указанного на заводской табличке электродвигателя, влечет за собой изменение его вращающего момента, токов, температур нагрева обмоток и активной стали, энергоэкономических показателей — коэффициента мощности и КПД.
В получившем наибольшее распространение асинхронном короткозамкнутом электродвигателе с понижением напряжения уменьшается пропорционально квадрату напряжения вращающий момент, снижается частота вращения и соответственно падает производительность механизма.
Уменьшение напряжения ниже 95 % от номинального характеризуется значительным увеличением токов и нагревом обмоток. Повышение температуры нагрева прежде всего оказывает вредное воздействие на изоляцию обмотки статора, вызывая ее преждевременное старение. Увеличение напряжения свыше 110 % от номинального сопровождается в первую очередь повышением нагрева активной стали и общим увеличением нагрева обмотки статора по мере увеличения тока.
Отклонения напряжения в пределах от 95 до 110 % номинального не вызывают столь серьезных изменений параметров электродвигателя и поэтому являются допустимыми. Однако оптимальные показатели и характеристики электродвигателя обеспечиваются при напряжениях в пределах от 100 до 105 % номи-нального. С целью сохранения оптимальных параметров электродвигателя, создания наилучших условий для его пуска необходимо поддерживать напряжение на шинах на уровне верхнего предела, т.е. 105 % от номинального.
На электродвигателях и приводимых ими в действие механизмах должны быть нанесены стрелки, указывающие направление вращения. Кроме того, на электродвигателях и их пусковых устройствах должны быть надписи с наименованием агрегата, к которому они относятся, выполняемые с учетом требований ПТЭ.
Выполнение функций большинства механизмов осуществляется при определенном направлении вращения. Поэтому направление вращения электродвигателя должно быть согласовано с требуемым направлением вращения механизма. Следует учитывать, что определенное направление вращения для ряда электродвигателей и механизмов является обязательным по условиям охлаждения, смазки подшипников и другим конструктивным особенностям.
Плотность тракта охлаждения (корпуса электродвигателя, воздуховодов, заслонок) должна периодически проверяться. Индивидуальные электродвигатели внешних вентиляторов охлаждения должны автоматически включаться и отключаться при включении и отключении основных электродвигателей.
Продуваемые электродвигатели, устанавливаемые в пыльных помещениях и помещениях с повышенной влажностью, должны иметь подвод чистого охлаждающего воздуха. Данное требование преследует цель обезопасить электродвигатели от интенсивного загрязнения и увлажнения их активных частей. Опасному воздействию загрязненной и увлажненной среды в первую очередь подвергается изоляция обмотки статора. Попадание в электродвигатель пыли резко ухудшает условия его охлаждения, вызывает повышенный нагрев, ускоряющий старение изоляции. Увлажнение снижает электрическую прочность и вызывает пробой изоляции. Поэтому подвод чистого охлаждающего воздуха по воздуховодам к продуваемым электродвигателям создаст нормальные условия для их работы.
При перерыве в электропитании продолжительностью до 2,5 с должен быть обеспечен самозапуск электродвигателей ответственных механизмов.
При отключении электродвигателя ответственного механизма от действия защиты и отсутствии резервного электродвигателя допускается повторное включение электродвигателя после внешнего осмотра. Перечень ответственных механизмов должен утверждаться главным энергетиком предприятия.
Целью самозапуска является восстановление нормальной работы электродвигателей после кратковременного перерыва в электропитании, который может быть вызван отключением рабочего источника питания, коротким замыканием во внешней сети и т.п. После исчезновения питания происходит торможение, т.е. снижение частоты вращения электродвигателей. Возможность самозапуска зависит от продолжительности перерыва электропитания. Чем больше этот перерыв, тем более глубокое торможение претерпевают электродвигатели, а чем меньше частота их вращения в момент восстановления электропитания, тем больше суммарный ток самозапускающихся электродвигателей, который, увеличивая падение напряжения в линии питания, уменьшает начальное напряжение самозапуска, что в свою очередь увеличивает время разбега электродвигателей и восстановление производительности механизмов.
Электродвигатели, длительно находящиеся в резерве, должны осматриваться и опробоваться вместе с механизмами по утвержденному графику. Бесперебойная работа основных агрегатов оборудования во многом зависит от состояния и готовности к работе резервных электродвигателей. Резервные электродвигатели следует рассматривать как работающие.
Надзор за нагрузкой электродвигателей, вибрацией, температурой подшипников и охлаждающего воздуха, уход за подшипниками (поддержание уровня масла) и устройствами подвода воздуха и воды для охлаждения обмоток, а также операции по пуску и останову двигателей осуществляются дежурным персоналом цеха, обслуживающим механизмы.
Допускается осуществлять пуски электродвигателя с короткозамкнутым ротором 2 раза подряд из холодного состояния и 1 раз из горячего состояния.
Периодичность ремонтов электродвигателей не регламентирована. Это позволяет выполнять ремонт электродвигателей в плановые сроки ремонта основных агрегатов оборудования. Установленные периодичность и виды ремонта должны обеспечить надежную работу электродвигателей.
Профилактические испытания и измерения на электродвигателях должны производиться в соответствии с Нормами испытания электрооборудования.
Допустимый нагрев электрических двигателей зависит от класса изоляции обмоток. Переход на более высокий класс изоляции электродвигателя может быть осуществлен только при капитальном ремонте.
Необходимо знать, что с повышением температуры обмоток электродвигателей сверх допустимых значений, резко сокращается срок службы изоляции.
Температурой окружающего воздуха, при которой электродвигатель может работать с номинальной мощностью, считается 40 ºС. При повышении температуры окружающего воздуха выше 40 ºС, нагрузка на электродвигатель должна быть снижена настолько, чтобы температура отдельных его частей не превышала допустимых значений.
Предельные допустимые превышения температуры активных частей электродвигателей и при температуре окружающей среды 40 ºС не должна превышать: 65 ºС для изоляции класса А; 80 ºС для изоляции класса Е; 90 ºС для изоляции класс В; 110 ºС для изоляции класса Г; 135 ºС для изоляции класса Н.
У асинхронных двигателей с уменьшением напряжения питающей сети, в квадрате уменьшается мощность на валу двигателя. Кроме того снижение напряжения ниже 95% от номинального приводит к значительному росту тока двигателя и нагреву обмоток. Рост напряжения выше 110% от номинального также ведет к росту тока в обмотках двигателя и увеличивается нагрев статора за счет вихревых токов.
Независимо от снижения температуры окружающего воздуха увеличивать токовые нагрузки более чем на 10% номинального не допускается.
Возможны следующие замыкания в обмотках электрических машин переменного тока: между витками одной катушки, между катушками или катушечными группами одной фазы, между катушками разных фаз.
Основным признаком, по которому можно найти замыкание в обмотках электродвигателя переменного тока, является нагрев короткозамкнутого контура. Для этого необходимо ощупать обмотку электродвигателя после ее отключения. Ощупывание обмотки следует производить только при выключенной обмотке!
Чтобы найти дефект в фазном роторе асинхронного двигателя, ротор затормаживают и включают статор в сеть. В случае замыкания значительной части обмотки ротора или если двигатель имеет большую мощность, затормаживание при номинальном напряжении становится невозможным, так как вызывает большую силу тока в статоре и срабатывание защиты двигателя. В таких случаях испытание рекомендуется производить при пониженном напряжении.
В некоторых случаях короткозамкнутую часть обмотки электродвигателя можно сразу определить по внешнему виду — по обуглившейся изоляции.
Следует иметь в виду, что при наличии параллельных ветвей в обмотке короткое замыкание в одной из ветвей фазы (при значительном числе замкнувшихся витков) может вызвать нагрев и другой ветви, не имеющей короткого замыкания, так как последняя оказывается замкнутой витками дефектной ветви обмотки.
Опыт определения дефектной фазы рекомендуется производить при пониженном напряжении (1/3 — 1/4 номинального), в случае асинхронного двигателя с фазным ротором обмотка последнего может быть разомкнута, а в случае асинхронного двигателя с короткозамкнутым ротором или же в случае синхронного двигателя ротор может вращаться или быть заторможенным. При проведении опыта с синхронным двигателем в неподвижном состоянии его обмотка возбуждения должна быть замкнута накоротко или же на разрядное сопротивление.
В опыте с неподвижной синхронной машиной токи в ее фазах будут различаться даже в том случае, если машина исправна, что объясняется магнитной асимметрией ее ротора. При поворачивании ротора эти токи будут изменяться, однако при исправной обмотке пределы их изменений будут одинаковы.
Фаза, имеющая замыкание, может быть определена и по значению ее сопротивления постоянному току, измеренного мостом либо по методу амперметра — вольтметра, меньшее сопротивление будет иметь фаза с замыканием. Если же нет возможности разъединить фазы, то производят измерения трех междуфазных сопротивлений.
В случае соединения фаз электродвигателя звездой наибольшим будет междуфазное сопротивление, измеренное на концах фаз, не имеющих замыканий, два других сопротивления будут равны между собой и будут меньше первого. В случае соединения фаз электродвигателя треугольником наименьшее сопротивление будет на концах фазы, имеющей замыкание, два других измерения дадут большие значения сопротивления, причем оба они будут одинаковы.
Катушечные группы или катушки, имеющие замыкания, могут быть найдены при питании переменным током всей ей обмотки или только дефектной фазы по нагреву или по значению падения напряжения на их концах. Катушечные группы или катушки, имеющие замыкание, будут сильно нагреты и иметь меньшее падение напряжения (при измерении напряжения удобно пользоваться острыми щупами, которыми прокалывают изоляцию соединительных проводов). В этом случае, так же как и выше, дефектные катушки можно найти по значению сопротивления постоянному току.
Замыкания в обмотке генератора могут быть найдены по значению индуктированной ЭДС в фазах обмотки, в ее катушечных группах или в катушках. Для этого генератор пускают в ход, дают ему небольшое возбуждение и производят измерения фазных напряжений; если обмотки соединены треугольником, то фазы следует разъединить. Фаза, имеющая замыкание, будет иметь меньшее напряжение. Для нахождения катушечной группы или катушки, имеющей замыкание, измеряют напряжение на их концах. Для высоковольтной машины опыт можно произвести при остаточном напряжении.
В тех случаях, когда необходимо выяснить, имеется ли дефект в статорной или роторной обмотке, поступают следующим образом.
Статорную обмотку включают на пониженное напряжение (1/3 — 1/4 номинального) при разомкнутом роторе и измеряют напряжение на кольцах ротора, медленно проворачивая ротор. Если напряжения на кольцах ротора (попарно) не равны между собой и меняются в зависимости от положения ротора по отношению к статору, то это указывает на замыкание в статорной обмотке.
При замыкании в роторной обмотке (при исправной статорной) напряжение между кольцами ротора будет неодинаковым и не будет меняться в зависимости от положения ротора.
Опыт может быть произведен при питании ротора и измерении напряжения на зажимах статора, при этом получится обратная картина. Подводимое к ротору напряжение должно составлять 1/3 — 1/4 номинального напряжения на кольцах ротора, т. е. напряжения на кольцах при неподвижном роторе и статоре, включенном на номинальное напряжение.
После того как установлено, какая из обмоток (роторная или статорная) имеет соединение между витками, определяют дефектную фазу, катушечную группу или катушку рассмотренными выше способами.
В сложных случаях (при замыкании большого числа катушек) или когда короткозамкнутую ветвь по каким-либо причинам не удается выявить, прибегают к методу деления обмотки на части. Для этого обмотку делят сначала пополам и проверяют мегомметром соединение между собой этих частей. Затем одну из этих частей делят снова на две части и каждую из них проверяют на соединение с первой половиной и так далее до тех пор, пока не будут найдены катушки, имеющие соединение.
Если замыкание произошло между двумя фазами, то место соединения находят аналогично предыдущему, разъединяя обмотки пофазно. Катушки одной из фаз, имеющей соединение, разделяют на две части и мегомметром проверяют наличие соединений каждой такой половины со второй фазой. Затем ту часть, которая соединена с другой фазой, снова разделяют на две части и каждую из них снова проверяют и т. д.
Метод последовательного деления на части применяют при нахождении замыкания в обмотках, имеющих параллельные ветви. В этом случае необходимо дефектные фазы разделить на параллельные ветви и определить сначала, между какими ветвями имеется соединение, а уж затем применить к ним этот метод.
Так как замыкания между фазами или катушечными группами чаще бывают в лобовых частях обмотки или соединительных проводниках, то иногда удается сразу же найти место соединения путем приподнимания и шевеления лобовых частей с одновременной проверкой мегомметром.
СПИСОК ЛИТЕРАТУРЫ
1 |
К. А. Раицкий Экономика организации (предприятия) 4-е издание переработанное и дополненное – М.: Дашков и Ко, 2003. – 1012с. |
2 |
В. К. Скляренко Экономика предприятия – М.: ИНФРА-М, 2007. – 528с. |
3 |
Н. А. Сафронов Экономика организации (предприятия) – М.: Экономист, 2005. – 251с. |
4 |
А. Е. Карлик Экономика предприятия – М.: ИНФРА-М, 2004. – 432с. |
|
|