
- •2.Геометрия, силы в зацеплении и расчет конических передач.
- •15. Геометрия, силы в зацеплении, к.П.Д. И кинематика червячных передач.
- •2.Диаграмма растяжения: характеристика зон. Основные механические характеристики материалов.
- •3.Дифференциальные зависимости при изгибе и проверка эпюр.
- •4.Диаграмма предельных напряжений. Определение коэффициента запаса при расчете на переменные напряжения.
- •1.Зубчатые передачи и их классификация. Геометрия эвольвентного зацепления.
- •1.2 Эвольвентное зацепление
- •2.Задачи кинематического анализа механизмов. Построение плана скоростей.
- •4.Исследование плоского напряженного состояния.
- •Выбор материала и допускаемых напряжений
- •Допускаемые изгибные напряжения
- •2.Классификация и обозначения подшипников качения. Расчет динамической грузоподъемности.
- •3.Кинематические пары и их классификация. Кинематические цепи и степень подвижности.
- •4.Напряженное состояние в точке и его виды. Методика исследования напряженного состояния.
- •1.Обобщенный закон Гука.
- •2.Определение касательных напряжений при изгибе (формула Журавского). Потенциальная энергия деформации.
- •6.Определение напряжений при чистом сдвиге. Условие прочности. Расчет заклепочных и сварных соединений.
- •7. Определение внутренних сил, напряжений и углов закручивания при кручении.
- •8.Определение положения главных осей и главных моментов инерции.
- •9.Определение главных напряжений и экстремальных касательных напряжений при объемном напряженном состоянии.
- •10.Общие сведения о ременных передачах. Силы и напряжения в ременной передаче. Давление на вал.
- •7. Понятие об устойчивости и критическая сила. Обобщенная формула Эйлера. Радиус инерции. Гибкость стержня.
- •8. Пределы применимости формулы Эйлера. Формула Ясинского. Проектный расчет методом последовательных приближений.
- •9. Порядок проектного расчета цилиндрических передач.
- •2. Определяют допускаемые напряжения
- •10. Порядок подбора подшипников качения.
- •12. Понятие об усталостной прочности. Характеристики цикла напряжений. Кривые усталости и предел выносливости.
- •1.2 Характеристики цикла напряжений
- •1. Расчет цилиндрических витых пружин.
- •2. Расчет цилиндрических зубчатых передач: определение сил в зацеплении, расчет по контактным напряжениям и напряжениям изгиба.
- •1.5 Расчет цилиндрических зубчатых передач
- •3. Расчет червячных передач по контактным напряжениям и напряжениям изгиба.
- •Где коэффициент нагрузки (9)
- •Допускаемые контактные напряжения - (12)
- •6. Расчет сварных соединений внахлестку. Выбор допускаемых напряжений.
- •7. Резьбовые соединения. Крепежные детали и виды резьб. Параметры метрической резьбы. Расчет резьбы.
- •9. Расчет стержня болта.
- •10. Расчет шпоночных и шлицевых соединений.
- •1.Структурная классификация плоских механизмов.
- •2. Статические моменты и центр тяжести.
- •2. Три основные задачи, решаемые из условия прочности.
- •3. Тяговый расчет ременной передачи, порядок проектного расчета.
- •2. Условие прочности и жесткости при кручении. Потенциальная энергия деформаций.
Допускаемые изгибные напряжения
,
где
коэффициент безопасности
выбирается по таблицам в зависимости
от материала и способа получения
заготовки
2.Классификация и обозначения подшипников качения. Расчет динамической грузоподъемности.
Опоры валов и осей называют подшипниками. Они воспринимают и передают на раму силы, действующие на вал. По виду трения между рабочими поверхностями различают подшипники скольжения и качения. Наиболее распространены подшипники качения.
Подшипники качения
Они состоят из следующих деталей:
а) наружных и внутренних колец;
б) тел качения (шариков или роликов);
в) сепараторов.
Достоинства: меньшее трение и износ; высокий КПД; высокая степень стандартизации и взаимозаменяемости.
Краткая характеристика основных типов подшипников качения.
Радиальные шарико или роликоподшипники (рис.1, а, б). Они предназначены для восприятия радиальных нагрузок, могут воспринимать небольшие осевые нагрузки.
Радиально-упорные шарикоподшипники. Они воспринимают комбинированные радиально-осевые нагрузки.
Конические роликоподшипники (рис. 1, 2). Воспринимают значительные
радиальные и осевые нагрузки.
Упорные подшипники (рис. 1,д). Воспринимают только осевые нагрузки
Условное обозначение подшипников состоит из четырех и более цифр.
Последние
две цифры умноженные на 5 дают внутренний
диаметр подшипника при
мм.
Третья цифра справа обозначает серию подшипника: 1-сверхлегкая; 2-легкая; 3-средняя; 4-тяжелая и т.д.
Четвертая цифра означает тип подшипника: 0-радиальный шариковый; 1- радиальный шариковый двухрядный; 2-радиальный роликовый с короткими цилиндрическими роликами; 6-радиальный упорный; 7-конический и т.д.
Остальные цифры указывают конструктивные особенности.
Все подшипники стандартизованы. Конструктивные размеры, статическая и динамическая грузоподъемность всех подшипников приведены в ГОСТах.
Подбор подшипников качения
Они подбираются по динамической грузоподъемности. Требуемую динамическую грузоподъемность вычисляют по формуле
(1)
где
L=
(2)
- долговечность подшипника в млн. оборотов.
Здесь n - число оборотов вала в минуту;
-
срок службы в часах;
m – показатель степени: m=3 для шарикоподшипников,
- для роликоподшипников;
р - эквивалентная нагрузка на подшипник в кН.
Она определяется по формуле
,
(3)
где
-
коэффициент безопасности, берется из
таблиц в зависимости от вида нагрузки;
-
температурный коэффициент: при Т1250
КТ=1,
при Т1250
по таблицам;
V- коэффициент, учитывающий вращения колец: при вращении внутреннего кольца V=1, при вращении наружного V=1.2;
R и A - радиальная и осевая нагрузка на подшипник;
X,Y – коэффициенты радиальной и осевой нагрузки;
Для радиальных подшипников A=Fа - осевой силе на валу.
При действии радиальных сил возникают осевые составляющие. Они равны:
- конические передачи S=0.83eR; (4)
- радиально-упорные S=eR.
Коэффициент
осевого нагружения е
берется из таблиц ГОСТов для конических
подшипников и из специальных таблиц в
зависимости от отношения
для радиально-упорных подшипников.
Здесь Fа
- осевая сила на валу;
Со - статическая грузоподъемность из таблиц ГОСТа.
Для радиальных и радиально-упорных подшипников X и Y берут из специальных таблиц.
После
определения
его сравнивают с табличным значением
.
Подшипник проходит по грузоподъемности,
если
.