
- •2.Геометрия, силы в зацеплении и расчет конических передач.
- •15. Геометрия, силы в зацеплении, к.П.Д. И кинематика червячных передач.
- •2.Диаграмма растяжения: характеристика зон. Основные механические характеристики материалов.
- •3.Дифференциальные зависимости при изгибе и проверка эпюр.
- •4.Диаграмма предельных напряжений. Определение коэффициента запаса при расчете на переменные напряжения.
- •1.Зубчатые передачи и их классификация. Геометрия эвольвентного зацепления.
- •1.2 Эвольвентное зацепление
- •2.Задачи кинематического анализа механизмов. Построение плана скоростей.
- •4.Исследование плоского напряженного состояния.
- •Выбор материала и допускаемых напряжений
- •Допускаемые изгибные напряжения
- •2.Классификация и обозначения подшипников качения. Расчет динамической грузоподъемности.
- •3.Кинематические пары и их классификация. Кинематические цепи и степень подвижности.
- •4.Напряженное состояние в точке и его виды. Методика исследования напряженного состояния.
- •1.Обобщенный закон Гука.
- •2.Определение касательных напряжений при изгибе (формула Журавского). Потенциальная энергия деформации.
- •6.Определение напряжений при чистом сдвиге. Условие прочности. Расчет заклепочных и сварных соединений.
- •7. Определение внутренних сил, напряжений и углов закручивания при кручении.
- •8.Определение положения главных осей и главных моментов инерции.
- •9.Определение главных напряжений и экстремальных касательных напряжений при объемном напряженном состоянии.
- •10.Общие сведения о ременных передачах. Силы и напряжения в ременной передаче. Давление на вал.
- •7. Понятие об устойчивости и критическая сила. Обобщенная формула Эйлера. Радиус инерции. Гибкость стержня.
- •8. Пределы применимости формулы Эйлера. Формула Ясинского. Проектный расчет методом последовательных приближений.
- •9. Порядок проектного расчета цилиндрических передач.
- •2. Определяют допускаемые напряжения
- •10. Порядок подбора подшипников качения.
- •12. Понятие об усталостной прочности. Характеристики цикла напряжений. Кривые усталости и предел выносливости.
- •1.2 Характеристики цикла напряжений
- •1. Расчет цилиндрических витых пружин.
- •2. Расчет цилиндрических зубчатых передач: определение сил в зацеплении, расчет по контактным напряжениям и напряжениям изгиба.
- •1.5 Расчет цилиндрических зубчатых передач
- •3. Расчет червячных передач по контактным напряжениям и напряжениям изгиба.
- •Где коэффициент нагрузки (9)
- •Допускаемые контактные напряжения - (12)
- •6. Расчет сварных соединений внахлестку. Выбор допускаемых напряжений.
- •7. Резьбовые соединения. Крепежные детали и виды резьб. Параметры метрической резьбы. Расчет резьбы.
- •9. Расчет стержня болта.
- •10. Расчет шпоночных и шлицевых соединений.
- •1.Структурная классификация плоских механизмов.
- •2. Статические моменты и центр тяжести.
- •2. Три основные задачи, решаемые из условия прочности.
- •3. Тяговый расчет ременной передачи, порядок проектного расчета.
- •2. Условие прочности и жесткости при кручении. Потенциальная энергия деформаций.
1.Зубчатые передачи и их классификация. Геометрия эвольвентного зацепления.
Зубчатые передачи (ЗП) широко используются во многих механизмах для преобразования вращательного движения ведущего звена во вращательное или поступательное движение ведомого звена с требуемой скоростью.
Достоинства: надежность, высокий КПД, компактность, высокая точность, способность передавать большие нагрузки.
Конструкции ЗП разнообразны, поэтому существует множество признаков классификации. Плакаты.
По взаимному расположению осей: цилиндрические, конические, червячные.
По форме профилей зубьев: эвольвентные, круговые, циклоидальные.
По расположению зубьев относительно образующей: прямозубые, косозубые, шевронные, криволинейные.
По виду зацепления: с внешним, внутренним и реечным зацеплением.
По числу ступеней: одно, два и многоступенчатые.
По конструктивному исполнению корпуса: закрытые и открытые.
Основные требования к ЗП:
Обеспечение заданного передаточного отношения.
Эксплуатационные требования: малые скорости скольжения и износ зубьев, высокий КПД, прочность, комплектность, плавность работы и малый шум.
Простота изготовления колес высокопроизводительными способами (технологичность).
1.2 Эвольвентное зацепление
Требованиям к ЗП наиболее полно удовлетворяет эвольвентное зацепление, которое стандартизировано и наиболее широко применяется на практике. Эвольвентной называется кривая, которую описывает любая точка прямой линии перекатываемой без скольжения по окружности, называемой основной окружностью.
Рассмотрим геометрию эвольвентного зацепления. Плакат. Колесо и шестерня. Параметры шестерни обозначены индексом 1, параметры колеса – индексом 2.
Основные параметры:
-
количество зубьев;
-
диаметры делительных окружностей (по
которым обкатываются колеса при
вращении);
-
диаметры основных окружностей;
-
диаметры окружностей выступов;
-
диаметры окружностей впадин;
-
высота головки;
- высота зуба;
-
высота ножки зуба;
NN – линия зацепления (общая касательная к основным окружностям);
- угол зацепления,
для стандартных передач
;
- межцентровое
расстояние, для стандартных передач
гостировано.
В
процессе зацепления пары зубьев точка
их контакта перемещается по линии E1E2,
которая называется рабочим участком
линии зацепления или длиной
зацепления,
-
это отрезок между точками пересечения
окружностей выступов с линией зацепления
NN.
Расстояние
между точками на профиле соседних
зубьев по делительной окружности
называется окружным шагом и обозначается
P:
,
- модуль зацепления.
Модуль является основной характеристикой размеров зубьев. Он стандартизирован. Через него определяются все геометрические параметры зубчатой передачи:
,
,
;
,
,
;
(6)
,
.
Для
обеспечения непрерывной плавной работы
зубчатой передачи необходимо чтобы до
выхода из зацепления предыдущей пары
зубьев зашла в зацепление последующая
пара. Это будет обеспечено, если
-
шаг по основной окружности.
Отношение
называется коэффициентом
перекрытия
,
практически допустимо
.
Эвольвентные зубья в основном нарезаются
методом обкатки на станках с помощью
гребенок, долбяков или червячных фрез.
Достоинства эвольвентного зацепления:
малая чувствительность к неточности изготовления;
возможность коррегирования профилей;
возможность нарезания одним инструментом колес с различным числом зубьев;
высокопроизводительное нарезание.
Недостаток:
ограниченная возможность сокращения габаритов передачи
.