
- •2.Геометрия, силы в зацеплении и расчет конических передач.
- •15. Геометрия, силы в зацеплении, к.П.Д. И кинематика червячных передач.
- •2.Диаграмма растяжения: характеристика зон. Основные механические характеристики материалов.
- •3.Дифференциальные зависимости при изгибе и проверка эпюр.
- •4.Диаграмма предельных напряжений. Определение коэффициента запаса при расчете на переменные напряжения.
- •1.Зубчатые передачи и их классификация. Геометрия эвольвентного зацепления.
- •1.2 Эвольвентное зацепление
- •2.Задачи кинематического анализа механизмов. Построение плана скоростей.
- •4.Исследование плоского напряженного состояния.
- •Выбор материала и допускаемых напряжений
- •Допускаемые изгибные напряжения
- •2.Классификация и обозначения подшипников качения. Расчет динамической грузоподъемности.
- •3.Кинематические пары и их классификация. Кинематические цепи и степень подвижности.
- •4.Напряженное состояние в точке и его виды. Методика исследования напряженного состояния.
- •1.Обобщенный закон Гука.
- •2.Определение касательных напряжений при изгибе (формула Журавского). Потенциальная энергия деформации.
- •6.Определение напряжений при чистом сдвиге. Условие прочности. Расчет заклепочных и сварных соединений.
- •7. Определение внутренних сил, напряжений и углов закручивания при кручении.
- •8.Определение положения главных осей и главных моментов инерции.
- •9.Определение главных напряжений и экстремальных касательных напряжений при объемном напряженном состоянии.
- •10.Общие сведения о ременных передачах. Силы и напряжения в ременной передаче. Давление на вал.
- •7. Понятие об устойчивости и критическая сила. Обобщенная формула Эйлера. Радиус инерции. Гибкость стержня.
- •8. Пределы применимости формулы Эйлера. Формула Ясинского. Проектный расчет методом последовательных приближений.
- •9. Порядок проектного расчета цилиндрических передач.
- •2. Определяют допускаемые напряжения
- •10. Порядок подбора подшипников качения.
- •12. Понятие об усталостной прочности. Характеристики цикла напряжений. Кривые усталости и предел выносливости.
- •1.2 Характеристики цикла напряжений
- •1. Расчет цилиндрических витых пружин.
- •2. Расчет цилиндрических зубчатых передач: определение сил в зацеплении, расчет по контактным напряжениям и напряжениям изгиба.
- •1.5 Расчет цилиндрических зубчатых передач
- •3. Расчет червячных передач по контактным напряжениям и напряжениям изгиба.
- •Где коэффициент нагрузки (9)
- •Допускаемые контактные напряжения - (12)
- •6. Расчет сварных соединений внахлестку. Выбор допускаемых напряжений.
- •7. Резьбовые соединения. Крепежные детали и виды резьб. Параметры метрической резьбы. Расчет резьбы.
- •9. Расчет стержня болта.
- •10. Расчет шпоночных и шлицевых соединений.
- •1.Структурная классификация плоских механизмов.
- •2. Статические моменты и центр тяжести.
- •2. Три основные задачи, решаемые из условия прочности.
- •3. Тяговый расчет ременной передачи, порядок проектного расчета.
- •2. Условие прочности и жесткости при кручении. Потенциальная энергия деформаций.
12. Понятие об усталостной прочности. Характеристики цикла напряжений. Кривые усталости и предел выносливости.
Понятие об усталостной прочности
Многие детали машин в процессе работы испытывают переменные во времени напряжения (чаще циклические): детали кривошипно-шатунного механизма, ось транспортного средства, валы редукторов и т.д. Опыт показывает, что при переменных напряжениях после некоторого числа циклов может наступить разрушение детали, в то время как при том же неизменном во времени напряжении разрушения не происходит. Пример – проволока. Число циклов до разрушения зависит от материала и амплитуды напряжений и меняется в широких пределах. Разрушение материала при действии переменных напряжений называется усталостью.
Рассказать о механизме разрушения. Он носит местный характер. Накопление усталостных повреждений приводит к образованию макротрещины. К разрушению приводит развитие усталостной трещины.
1.2 Характеристики цикла напряжений
Чаще всего встречается и наиболее опасен для материала гармонический закон изменения напряжений. Цикл напряжений характеризуется следующими параметрами:
-
максимальные и минимальные напряжения
цикла
-
среднее напряжение цикла
-
амплитуда цикла:;
-
коэффициент асимметрии цикла:
Рисунок 1. Характеристики цикла напряжений
Если
,
то
.
Такой цикл называется симметричным.
Если
,
,
то
.
Такой цикл называется пульсирующим.
Все
термины и определения справедливы и
для переменных касательных напряжений,
если
заменить на
.
Предел выносливости
Для
расчетов на прочность при переменных
напряжениях необходимо знать механические
характеристики материалов, которые
определяются путем специальных
испытаний. Берется гладкий полированный
стержень круглого сечения
и длиной
.
Его подвергают симметричному циклу
при различных амплитудах. Дать схему
испытательной машины и методику
проведения испытаний. Образец доводят
до разрушения и ритеммют число циклов
до разрушения. Полученная кривая
называется кривой усталости или кривой
Велера. (рисунок 2).
Рисунок 2. Кривая усталости
Эта кривая примечательна тем, что, начиная с некоторого напряжения, она идет практически горизонтально. Это значит, что при напряжениях меньших некоторого предельного напряжения образец может выдержать бесчисленное множество циклов.
Максимальные
переменные напряжения, который материал
способен выдержать без разрушения, при
любом числе циклов, называют пределом
выносливости и обозначают
.
Опыты
обычно производят до базового числа
циклов. Для углеродистых сталей принимают
,
для закаленных сталей и цветных металлов
.
Опытным путем установлены эмпирические
зависимости:
;
.
Р
1. Расчет цилиндрических витых пружин.
Этот расчет проводится по формулам теории кручения, так как в поперечном сечении проволоки возникает крутящий момент и поперечная сила. Касательные напряжения от кручения на много больше, чем от сдвига и равны
где
осевая сила на пружине;
диаметр пружины;
диаметр проволоки,
из которой изготовлена пружина.
Осадка пружины определяется по формуле
где модуль сдвига;
число витков.
Условие прочности и жесткости
;
.
При проектном расчете из условия прочности определяют диаметр проволоки, а из условия жесткости – число витков.