- •Неорганическая химия
- •26. Электронная структура атомов. S-, p-, d-, f- электронные семейства атомов.
- •32. Квантовые числа: главное, орбитальное, магнитное, спиновое.
- •1. Важнейшие классы неорганических соединений: оксиды, гидроксиды, кислоты, соли.
- •34. Гидролиз солей, образованных сильным основанием и слабой кислотой.
- •22. Гидролиз солей, образованных слабым основанием и слабой кислотой.
- •5. Амфотерные гидроксиды
- •7. Гидролиз солей, образованных слабым основанием и сильным кислотой. Степень и константа гидролиза.
- •14. Электрохимическая диссоциация воды. Ионное произведение воды. Водородный показатель.
- •6. Комплексные соединения. Комплексообразователь, лиганды.
- •3. Основные типы комплексных соединений (к.С.). Поведение к.С. В водных растворах. Константа нестойкости.
- •4. Номенклатура комплексных соединений. Координационное число.
- •9. Типы окислительно-восстановительных реакций.
- •20. Окислительно-восстановительные свойства перманганата калия.
- •15. Отношение металлов к соляной и серной кислотам (разбавленной и концентрированной).
- •24. Отношение металлов к азотной кислоте.
- •17. Закон эквивалентов. Определение эквивалентов простых и сложных веществ.
- •18. Способы выражения концентрации раствора: молярная, нормальная, титр.
- •39. Закон эквивалентов. Химический эквивалент. Определение эквивалента кислоты, основания и соли.
9. Типы окислительно-восстановительных реакций.
Реакции, в результате которых изменяются степени окисления элементов, называются окислительно-восстановительными.
Окисление – процесс отдачи электронов, сопровождающийся повышением степени окисленности элемента.
Восстановление – процесс присоединения электронов, сопровождающийся понижением степени окисленности элемента.
Вещество, в состав которого входит окисляющийся элемент, называется восстановителем, а вещество, содержащее восстанавливающийся элемент, окислителем.
Межмолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных веществ, например:
Н2S + Cl2 S + 2HCl
Внутримолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах одного и того же вещества, например:
NH4NO3 N2O + 2 H2O
Диспропорционирование (самоокисление-самовосстановление) - реакции, в которых атомы с промежуточной степенью окисления превращаются в эквимолярную смесь атомов с более высокой и более низкой степенями окисления:
Cl2 + H2O HClO + HCl
Реакции контрпропорционирования (коммутации) — это процессы взаимодействия окислителя и восстановителя, в состав которых входит один и тот же элемент с разными степенями окисления. В результате продуктом окисления и восстановления является вещество с промежуточной степенью окисления атомов данного элемента:
HBr+5O3(конц)+5HBr(конц)=3Br20+3H2O
16. Факторы, влияющие на окислительно-восстановительные процессы. Расстановка коэффициентов в окислительно-восстановительных реакциях.
Природа, концентрация, температура, катализаторы
Метод электронного баланса, основанный на учете изменения степеней окисления и принципе электронейтральности молекулы, является универсальным. Его обычно используют для составления уравнений окислительно-восстановительных реакций, протекающих между газами, твердыми веществами и в расплавах.
Последовательность операций, согласно этому методу, такая:
1) Записывают формулы реагентов и продуктов реакции в молекулярном виде:
2) Определяют степени окисления атомов, меняющих ее в процессе реакции:
3) По изменению степеней окисления устанавливают число электронов, отдаваемых восстановителем, и число электронов, принимаемых окислителем, и составляют электронный баланс с учетом принципа равенства числа отдаваемых и принимаемых электронов:
4) Множители электронного баланса записывают в уравнение окислительно-восстановительной реакции как основные стехиометрические коэффициенты:
5) подбирают стехиометрические коэффициенты остальных участников реакции:
При составлении уравнений следует учитывать, что окислитель (или восстановитель) может расходоваться не только в основной окислительно-восстановительной реакции, но и при связывании образующихся продуктов реакции, т.е. выступать в роли среды и солеобразователя.
20. Окислительно-восстановительные свойства перманганата калия.
Перманганат калия проявляет окислительные свойства за счет марганца в степени окисления +7. В зависимости от среды, в которой протекает реакция, он восстанавливается до разных продуктов: в кислотной среде — до солей марганца (II), в нейтральной — до оксида марганца (IV) в гидратной форме МnО(ОН)2, в щелочной — до манганат-иона МnО42−:
КИСЛОТНАЯ СРЕДА:
НЕЙТРАЛЬНАЯ СРЕДА:
ЩЕЛЕЧНАЯ СРЕДА:
