
- •1.Общее землеведение в системе географических наук
- •2. Общие сведения о форме и строении Земли
- •4.Суточное вращение Земли и его значение для географической оболочки
- •5. Орбитальное движение земли вокруг солнца
- •8.Геомагнитное поле земли
- •9.Солнечная радиация в атмосфере. Закон ослабления радиации
- •10.Суммарная солнечная радиация и ее динамика
- •11.Радиоционный баланс земли. Географическое распределение радиоционного баланса за год и по сезонам
- •12.Зональное и региональное распределение суммарной солнечной радиации по земной поверхности
- •13.Тепловой баланс
- •14.Суточный и готовой ход температуры воздуха
- •16.Типы годового хода температуры
- •17.18.Географическое распределение темпепаруты воздуха по поверхности земли в холодное и теплое время года
- •19.Влажность воздуха. Характеристики влажности воздуха
- •20.Испарение и испаряемость. Географическое распределение
- •21.Суточный и годоввой ход влажности воздуха
- •22.Конденсация и сублимация
- •23.Образование облаков .Классификация облаков
- •24.Образование жидких и твёрдых осадков
- •25.Географическое распределение облаков
- •27Формирование гумидного и аридного климата.
- •30. Горизонтальный барический градиент и ветер
- •32. Отклоняющая сила вращения Земли
- •33. Общая циркуляция атмосферы.
- •34.Местные ветра
- •35. Пассаты и погода в области формирования и развития..
- •36 Муссоны умеренных широт.
- •37.Муссоны тропических широт
- •38.Западный перенос. Районы развития, маршруты следования.
- •39. Билет. Ветра полярных широт.
- •40Билет. Главные климатологические фронты и воздушные массы атмосферы в приземном слое.
- •41 Билет. Вторичные фронты. Циклоны умеренных широт, погода в них.
- •42 Билет. Антициклоны и погода в них.
- •43 Билет. Циклоны тропических широт.
- •44Билет. Понятия «климат» и «погода». Метеорологический прогноз.
- •46 46. Классификация климатов по б. Г. Алисову. Принципы построения
- •47.Климат умеренных широт
16.Типы годового хода температуры
Типы годового хода температуры воздуха
Типы среднего изменения температуры воздуха у земной поверхности в течение года. Различают следующие главные Т. Г. X. Т. В.:
1) экваториальный — с небольшой годовой амплитудой (над океанами нередко меньше 1° и над материками 5—10°), двумя максимумами после равноденствий и двумя минимумами после солнцестояний;
2) тропический — с амплитудой порядка 5° над океанами и 20° над сушей, максимумом после летнего и минимумом после зимнего солнцестояния;
3) умеренного пояса — с максимумом (в северном полушарии) в июле или августе и минимумом в январе или феврале (в морском климате позже, чем в континентальном), большой амплитудой, достигающей внутри материков 60° и более. Этот тип делится на подтипы: субтропический, собственно умеренный и субполярный;
4) полярный — с очень большой, даже и в морских пунктах, годовой амплитудой, максимумом в июле — августе и минимумом в марте, ко времени появления солнца.
17.18.Географическое распределение темпепаруты воздуха по поверхности земли в холодное и теплое время года
Неравномерное нагревание поверхности Земли приводит к образованию разных типов климатических поясов и воздушных масс. Наиболее сильное нагревание планеты происходит в приэкваториальных областях. Нагретый воздух с поверхности суши и океана начинает подниматься вверх, унося вместе с собой огромное количество испарившейся воды. В верхних слоях атмосферы вода конденсируется и выпадает назад на землю в виде осадков. Именно поэтому на экваторе формируется очень влажный климат с большим количеством дождей. Поднявшийся над экватором воздух растекается к тропикам. Над тропиками уже отдавший всю влагу воздух полностью охлаждается и опускается вниз. При этом на тропиках формируется область высокого давления с постоянно ясным небом. Нисходящие потоки воздуха препятствуют парообразованию и формированию облаков, потому над тропиками осадков выпадает мало. Воздух из тропиков растекается по поверхности планеты в виде постоянно дующих ветров. Часть его возвращается к экватору, а часть движется в умеренные широты. Двигаясь к умеренным широтам воздух вновь нагревается у поверхности Земли и устремляется вверх. Над умеренными широтами вновь формируется область низкого давления. Устремляющийся вверх вместе с восходящим током воздуха пар конденсируется в верхних слоях атмосферы и выпадает ввиде осадков также, как и на экваторе. Воздух из умеренных широт растекается - часть обратно в сторону тропиков, а часть - к полюсам. На полюсах воздух окончательно остывает и опускается вниз. На полюсах, также как и на тропиках, формируется область высокого давления. Над полюсами наблюдается постоянно ясная погода. Воздух с полюсов возвращается в умеренные широты по поверхности Земли в виде постоянных ветров
19.Влажность воздуха. Характеристики влажности воздуха
В окружающем нас воздухе практически всегда находится некоторое количество водяных паров. Влажность воздуха зависит от количества водяного пара, содержащегося в нем.
Характеристики влажности воздуха
В атмосфере Земли содержится около 14 тыс. км3 водяного пара. Вода попадает в атмосферу в результате испарения с подстилающей поверхности. В атмосфере влага конденсируется, перемещается воздушными течениями и вновь выпадает в виде разнообразных осадков на поверхность Земли, совершая, таким образом, постоянный круговорот воды. Круговорот воды возможен, благодаря, способности воды находится в трёх состояниях (жидком, твердом, газообразном (парообразном)) и легко переходить из одного состояния в другое. Влагооборот является одним из важнейших циклов климатообразования.
Для количественного выражения содержания водяного пара в атмосфере употребляют различные характеристики влажности воздуха. Основные характеристики влажности воздуха – упругость водяного пара и относительная влажность.
Упругость (фактическая) водяного пара (е) – давление водяного пара находящегося в атмосфере выражается в мм.рт.ст. или в миллибарах (мб). Численно почти совпадает с абсолютной влажностью (содержанием водяного пара в воздухе в г/м3), поэтому упругость часто называют абсолютной влажностью. Упругость насыщения (максимальная упругость) (Е) – предел содержания водяного пара в воздухе при данной температуре. Значение упругости насыщения зависит от температуры воздуха, чем выше температура, тем больше он может содержать водяного пара.
Зависимость максимальной упругости от температуры.
Температура (оС)
- 30
- 20
- 10
0
10
20
30
Е (мм.рт.ст.)
0,37
0,95
2,14
4,58
9,21
17,54
31,82
Если воздух содержит водяного пара меньше, чем нужно для насыщения его при данной температуре, можно определить, насколько воздух близок к состоянию насыщения. Для этого вычисляют относительную влажность.
Относительная влажность (r) – отношение фактической упругости водяного пара к упругости насыщения, выраженное в процентах:
vlaj_ijyl
Распределение среднемесячной относительной влажности в июле (%) (по С.Г. Любушкиной и др.).
vlaj_janvl
Распределение среднемесячной относительной влажности в январе (%) (по С.Г. Любушкиной и др.).
При насыщении е = Е , r = 100%.
Имеются и другие важные характеристики влажности, как дефицит влажности и точка росы.
Дефицит влажности (D) – разность между упругостью насыщения и фактической упругостью:
D = E - e.
Точка росы τº – температура, при которой содержащийся в воздухе водяной пар мог бы насытить его. Пример, воздух при температуре 27ºС имеет е = 27,4 мб. Насытится он при температуре 20ºС, которая и будет точкой росы.
Водяной пар
является составной частью нижних слоев
атмосферы. От количества водяного
пара и степени его насыщения во многом
зависит состояние погоды: образование
и характер облаков, осадков, гроз и
туманов. Влажность воздуха бывает
абсолютной и относительной.