Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kvalimetria_v_stolbike.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
132.29 Кб
Скачать

0Ценка качества неметаллических материалов.

К неметаллическим материалам относятся полимерные материалы органические и неорганические: различные виды пластических масс, композиционные материалы на неметаллической основе, каучуки и резины, клеи, герметики, лакокрасочные покрытия, а также графит, стекло, керамика. Испытание на старение проводится как в естественных усло­виях, так и искусственными ускоренными методами. Атмосфер­ное старение проводится в различных климатических условиях в течение нескольких лет. Тепловое старение происходит при температуре на 50 °С ниже температуры плавления (разложения) полимера. Продолжительность испытания определяется време­нем, необходимым для снижения основных показателей на 50% от исходных. Сущность старения заключается в сложной цепной реакции, протекающей с образованием свободных радикалов (реже ионов), которая сопровождается деструкцией и структурированием поли­мера. Обычно старение является результатом окисления полимера атмосферным кислородом. Если преобладает деструкция, то поли­мер размягчается, выделяются летучие вещества (например, на­туральный каучук). При структурировании повышаются твер­дость, хрупкость, наблюдается потеря эластичности (бутадиено­вый каучук, полистирол). При высоких температурах (200–500 °С и выше) происходит термическое разложение органических полимеров, причем пиролиз полимеров, сопровождаемый испаре­нием летучих веществ, не является поверхностным явлением, а во всем объеме образца образуются молекулы, способные испа­ряться. Радиационная стойкость полимеров. Под действием ионизи­рующих излучений в полимерах происходят ионизация и возбу­ждение, которые сопровождаются разрывом химической связи и образованием свободных радикалов. Наиболее важными являются процессы сшивания или деструкции. При сшивании увеличивается молекулярная масса, повышаются теплостойкость и механические свойства. При деструкции, на­оборот, молекулярная масса снижается, повышается раствори­мость, уменьшается прочность. К структурирующимся полимерам относятся полиэтилен, полипропилен, полисилоксаны, полисти­рол, фенолоформальдегидные и эпоксидные смолы, поливинил-хлорид, полиамиды, поликарбонат. Наиболее устойчивы к радиа­ции полимеры, имеющие бензольное кольцо в виде боковой группы (полистирол). Структура С6Н5-группы имеет большое число энер­гетических уровней, вследствие чего поглощенная энергия быстро рассеивается по всей молекуле, не вызывая химической реакции. Для повышения радиационной стойкости в полимеры вводят антирады (аромати­ческие амины, фенолы, дающие эффект рассеяния энергии). Вакуум действует на полимер­ные материалы по-разному. Ухудшение их свойств связано с выделением из материала различных добавок (пластификаторов, стабилизаторов) и про­теканием процессов деструкции. Для резин на основе углеводородных каучуков ускоряются накопление оста­точной деформации и релаксации напряжения, что уменьшает работоспособность. Для ориентированных полимеров (поли­амиды, полиэтилен, полипропилен) долговечность в вакууме и на воздухе одинаковы. 0сновные методы акустического контроля

Различают пассивные и активные акустические методы контроля сварных соединений. Пассивные методы основаны на исследовании упругих волн, возникающих в контролируемом изделии во время или по окончании технологического процесса, или при нагружении, в частности в момент образования или развития несплошностей. К ним относятся методы контроля, использующие акустическую эмиссию, а также шумо- и вибродиагностика. Активные методы основаны на исследовании распространения колебаний специально вводимых в контролируемое изделие. Акустические колебания - это механические колебания среды. При акустическом контроле обычно используют колебания с частотой 0,5...25 МГц, т. е. ультразвуковые. Поэтому большинство акустических методов являются ультразвуковыми, хотя известны случаи использования и колебаний звуковой частоты, в частности импедансный метод контроля, используемый при контроле паяных, клееных или сваренных контактной сваркой конструкций. При теневом методе признаком обнаружения дефекта служит уменьшение интенсивности (амплитуды) ультразвуковой волны, прошедшей от излучающего пьезопреобразователя к приемному (рис. 180, а). Недостатки метода - необходимость двустороннего доступа к изделию и малая точность оценки координат дефектов, достоинство - высокая помехоустойчивость. Метод может применяться для изделий с грубо обработанной поверхностью. При зеркально-теневом методе признаком обнаружения дефекта является уменьшение интенсивности (амплитуды) ультразвуковой волны, отраженной от противоположной поверхности изделия (рис. 180, б). Отраженный сигнал называется донным. Метод не требует двустороннего доступа к контролируемому изделию, позволяет более достоверно выявлять корневые дефекты в стыковых швах, помехоустойчив, применяется для изделий небольшой толщины с грубо обработанной поверхностью. Однако точность определения координат дефекта и при этом методе невысока. При эхо-методе признаком обнаружения дефекта является прием эхо-сигнала, отраженного от> дефекта (рис. 180, в). При зеркально-теневом и эхо-методе возможно использование одного пьезопреобразователя в качестве излучателя и приемника (при эхо-методе, как правило, так и делается), однако сигнал при этом должен подаваться импульсами. Если дефект расположен слишком близко к поверхности, то сигнал от него приходит раньше, чем закончится зондирующий импульс, и этот сигнал не будет заметен на фоне зондирующего импульса - дефект не обнаруживается. Слой материала, непосредственно прилегающий к пьезопреобразователю, в котором дефект не обнаруживается, называется мертвой зоной. Эхо-метод по сравнению с ранее рассмотренными позволяет достаточно точно определить не только наличие дефекта, но и его характеристики. Если длина волны ультразвуковых колебаний больше размера дефекта, то будет происходить его огибание и дефект не обнаружится. При большой величине зерен металла происходит значительное затухание колебаний. Так как длина волны обратно пропорциональна частоте колебаний, то с увеличением частоты повышается чувствительность к более мелким дефектам, но возрастают структурные помехи. Это необходимо учитывать при выборе частоты. При контроле сварных соединений обычно используются частоты от 0,5 до 10 МГц. Ультразвуковой контроль (УЗК) крупнозернистых материалов (чугуна, меди, аустенитных сталей) затруднен. Возможно существенное ослабление колебаний в околошовной зоне сварного соединения. Зависимость коэффициента затухания от величины зерна используют в ультразвуковых структурных анализаторах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]