
- •11. Диаграмма Герцшпрунга –Рассела
- •12. Йеркская система классификации звёзд
- •21. Солнечное ядро
- •26. Отрицательные ионы водорода в солнечной фотосфере
- •27. Солнечная хромосфера
- •28. Акустические колебания Солнца
- •29. Солнечная корона
- •33. Факелы в солнечной фотосфере/
- •34. Солнечные вспышки
- •35. Протуберанцы
- •36. Цикл солнечной активности и числа Вольфа
- •37. Зодиакальный свет и противосияние
- •42. Спектрально-двойные звёзды
- •48. Длина волны Джинса
- •53. Стадия Главной последовательности жизни звёзд.
- •59. Сверхновые типа II
- •60. Нейтронные звёзды
- •61. Пульсары
- •62. Элементы классической теории чёрных дыр
- •63. Элементы квантовой теории чёрных дыр.
- •Эволюционные чёрные дыры
- •68. Гамма-всплески
- •73. Спиральные галактики с баром
- •79. Строение нашей Галактики
- •80. Балдж и галактический центр
- •89. Эволюция Галактики
- •90. Краткая характеристика ближайших галактик.
- •91. Столкновение галактик
- •96. Молекулярные облака
- •97. Космические лучи
- •98. Квазары
- •99. Метагалактика и иерархия строения Вселенной
- •100. Местная группа галактик
- •101. Местное сверхскопление галактик.
- •102. Методы определения расстояний до галактик.
- •103. Гравитационный парадокс
- •104. Фотометрический парадокс
- •108. Наблюдаемое распределение водорода и гелия во Вселенной
- •109. Спектральные характеристики реликтового излучения
- •110. Уравнения ото
- •111. Метрика и геодезические линии
- •112. Масштабный фактор
- •113. Гравитационное красное смещение
- •114. Космологическое красное смещение
- •122. Большой Взрыв
- •123. Космическая инфляция
- •Зарядовая (барионная) асимметрия
- •126. Эпоха лептонов и «отрыв» реликтовых нейтрино
- •127. Эпоха излучения и нуклеосинтез.
- •128. Рекомбинация водорода и отрыв излучения от вещества
- •131. Тёмная материя в ранней Вселенной
- •134. Акустические пики
- •140. Антропный принцип
- •145. Экзопланеты в зонах возможной жизни
- •146. Формула Дрейка
- •Все что написано ниже это лишь для вашего собственного прочтения и расширения кругазора.))))
59. Сверхновые типа II
В процессе термоядерного синтеза и образования тяжёлых элементов звезда сжимается, а температура в её центре растёт. Если масса звезды достаточно велика, то процесс термоядерного синтеза доходит до завершения с образованием ядер железа и никеля, а сжатие продолжается. При этом термоядерные реакции будут продолжаться только в некотором слое звезды вокруг центрального ядра — там, где ещё осталось невыгоревшее термоядерное топливо. Центральное ядро сжимается все сильнее, и в некоторый момент из-за давления в нём протоны начинают поглощать электроны, превращаясь в нейтроны. Это вызывает быструю потерю энергии, уносимой образующимися нейтрино, так что ядро звезды сжимается и охлаждается. Процесс коллапса центрального ядра настолько быстр, что вокруг него образуется волна разрежения. Тогда вслед за ядром к центру звезды устремляется и оболочка. Далее происходит отскок вещества оболочки от ядра и образуется распространяющаяся наружу ударная волна. При этом выделяется достаточная энергия для сброса оболочки сверхновой с большой скоростью.
60. Нейтронные звёзды
Массивные (М > 10 Mсолнца) звёзды проходят эволюционный путь горения вплоть до образования звёздного ядра из самого стабильного (максимальная энергия связи на нуклон) элемента 56 Fe. В таком ядре выделение ядерной энергии невозможно, рост давления не компенсирует рост сил тяготения при росте плотности и медленное квазистатическое сжатие сменяется быстрым коллапсом – происходит потеря гидродинамической устойчивости и взрыв сверхновой звезды. При быстром сжатии до плотности, близкой к плотности вещества в атомном ядре, выделяется огромное количество гравитационной энергии – примерно в 20 раз больше, чем за всё время ядерной эволюции, длящейся десятки млн. лет. Подавляющая часть этой энергии уносится нейтрино. После взрыва и сброса оболочки образуется остаток в виде нейтронной звезды – второй тип «мёртвых» звёзд. Нейтронная звезда – это один из конечных продуктов эволюции звёзд, состоит из нейтронной сердцевины и тонкой коры вырожденного вещества с преобладанием ядер железа и никеля.Нейтронные звёзды имеют очень малый размер — 20—30 км в диаметре, поэтому средняя плотность вещества такой звезды порядка плотности атомного ядра 2,8×1015 г/см³. Массы большинства известных нейтронных звёзд близки к 1,4 массы Солнца, что равно значению предела Чандрасекара.
61. Пульсары
В августе 1967 г. в Кембридже (Англия) было зарегистрировано космическое электромагнитное излучение в радиодиапазоне, исходящее от точечных источников в виде строго следующих друг за другом чётких импульсов. Длительность отдельного импульса у таких источников составляет от нескольких миллисекунд до нескольких десятых долей секунды. Резкость импульсов и необычайная правильность их повторений позволяют с очень большой точностью определить периоды пульсаций этих объектов, названных пульсарами (pulse + star). Периоды известных пульсаров заключены в пределах от 0,0015 до 4,3 с. В настоящее время известно более 1000 пульсаров. Расстояния до пульсаров в среднем составляет 3 кпк.
Кинетическая энергия пульсара трансформируется в электромагнитное излучение и происходит его торможение.