
- •Множества. Операции над множествами.
- •Грани числовых множеств. Свойство точной грани.
- •Теорема о существовании точной верхней и точной нижней граней.
- •Ограниченные и неограниченные последовательности.
- •Бесконечно большие и бесконечно малые последовательности: определение, свойства, связь между ними.
- •8. Свойства бесконечно малых последовательностей.
- •Понятие сходящейся последовательности. Предел последовательности.
- •10. О единственности предела сходящейся последовательности.
- •11.Алгебраическая сумма, произведение, частное сходящихся последовательностей.
- •Предельный переход в неравенствах.
- •13. О трех последовательностях
- •Монотонные последовательности.
- •Число е.
- •Теорема о вложенных промежутках.
- •Понятие функции и способы ее задания.
- •Предел функции в точке.
- •19.Предел функции на бесконечности (по Гейне и по Коши).
- •Теорема о пределах функции.
- •I замечательный предел.
- •II замечательный предел.
- •Бесконечно малые функции. Действия над ними.
- •Бесконечно большие функции. Связь с бесконечно малыми.
- •Сравнение бесконечно малых функций. Сравнение бесконечно больших функций.
- •25. Определение непрерывной функции в точке, на отрезке. Определение кусочно-непрерывной функции.
- •Теорема об устойчивости знака непрерывной функции.
- •I теорема Больцано – Коши.
- •II теорема Больцано – Коши.
- •Точная верхняя (нижняя) грани функции.
- •I теорема Вейерштрасса.
- •II теорема Вейерштрасса.
- •Теорема о непрерывной сложной функции.
- •Теорема о непрерывной обратной функции.
- •Понятие производной.
- •Геометрический смысл производной.
- •Понятие дифференцируемости функции.
- •38. Теорема о связи диффер. И существовании пр-ной.
- •Непрерывность и дифференцируемость функции.
- •Понятие дифференциала. Геометрический смысл.
- •Бесконечно малые, бесконечно большие функции. Связь между ними.
- •42. Свойства бесконечно малых функций.
- •43. Правила сравнения бесконечно малых и бесконечно больших функций.
- •Правила дифференцирования суммы, разности, произведения, частного двух функций.
- •Производные элементарных функций.
- •Теорема о производной обратной функции.
- •Производные обратных функций.
- •Теорема о производной сложной функции.
- •Производные высших порядков.
- •Дифференциалы высших порядков.
- •Возрастание, убывание функции в точке. Достаточное условие возрастания, убывания функции в точке.
- •Понятие локального экстремума. Необходимое условие локального экстремума.
- •Теорема Ролля.
- •Теорема Лагранжа.
- •Теорема Коши.
- •Условие монотонности функции на интервале.
- •58.Формула Тейлора.
- •I достаточное условие экстремума.
- •60. II достаточное условие экстремума.
- •61. Экстремум функции, не дифференцируемой в данной точке.
- •62. Направление выпуклости функции. Точки перегиба графика функции.
- •63.Необходимое условие точки перегиба.
- •Достаточное условие точки перегиба.
- •Асимптоты графика функции: вертикальная, горизонтальная, наклонная. Геометрический смысл наклонной асимптоты.
- •Производные сложных функций.
Теорема о вложенных промежутках.
Для любой последовательности вложенных отрезков существует единственная точка, принадлежащая всем этим отрезкам.
Док-во. Как следует из системы неравенств аn≤ аn+1 < bn+1 ≤ bn , левые концы отрезков образуют неубывающую последовательность а1≤а2≤а3≤…≤ аn≤…(*), тогда как правые концы – невозрастающую последовательность b1≥b2≥b3≥…≥ bn ≥…(**) . Последовательность (*) ограничена сверху, так как аn≤ b1 для всех n. Последовательность (**) ограничена снизу, так как bn≤а1 для всех n. В силу теоремы (е= lim(1+1\n)^n ( n->∞) эти последовательности являются сходящимися. Пусть lim аn=c1 (n->∞), a lim bn =c2 ( n->∞). Тогда по условию Lim (bn – аn) =0 ( n->∞) (***) получаем, что lim bn - lim аn = с2-с1=0, оттуда следует с1=с2, т.е. последовательности (*) и (**) имеют общий предел. Обозначим его буквой с; т.о. для любого n справедливы неравенства аn ≤ с ≤ bn. Это означает, что точка с принадлежит всем отрезкам последовательности аn≤ аn+1 < bn+1 ≤ bn.
Покажем, что общая точка с является единственной.. Допустим обратное, т.е. что существует еще одна такая точка c' (c≠c’). Но тогда для всех n должны выполнятся неравенства bn – аn ≥ │с-с'│, а значит , lim bn – аn ≥ │с-с'│>0, что противоречит условию(***). Т,Д,
Замечание: Теорема становится неверной, если вместо отрезков взять систему интервалов.
Понятие функции и способы ее задания.
Если для любого элемента хХ поставлен в соответствие по закону f единственный элемент уУ, то на множестве Х задана функция y=f (x), причем х – независимая переменная (аргумент), все значения х – область определения функции D (f); совокупность всех значений функции f (x) – область значений функции Е(f).
Функцию, D(f) и E(f) которой являются числовые множества, называют числовой функцией одной действительной переменной.
Графиком функции f(x) является множество точек плоскости, абсцисса которых равна аргументу, а ордината равна значению функции.
Графиком числовой функции f, заданной на числовом промежутке Х, называется множество G всех точек координатной плоскости, имеющих вид М(х; f(х)), где хХ, т.е. {(х; у): у=f(х); хХ}.
Функция задана аналитически, если закон, устанавливающий соответствие между множествами всех значений аргумента и функции, задается формулой.
Преимущества: сжатость, компактность задания, можно вычислить значение функции для любого значения аргумента из области определения, можно применить к данной функции аппарат мат анализа.
Табличный способ задания заключается в задании таблицы определенных значений аргумента и соответствующих им значений функции.
При графическом способе задания функции соответствие между аргументом и функцией задается посредствам графика.
Преимущества: наглядность, что делает его чрезвычайно полезным при изучении функции.
Пусть заданы две функции y = f(x) и z = F(y), при чем D(F)E(f), тогда для любого хХ соответствует zZ, где z = F(y), y = f(x), значит z=F(f(x)). Эта функция, определяемая соответствием называется сложной функцией или суперпозицией функций f и F.
Всякая функция, которая задана явным образом с помощью формулы, содержащей конечное число арифметических операций и суперпозиций элементарных функций называется элементарной функцией. D(f) = R для основных элементарных функций, при которых данная функция имеет смысл; E(f) - тоже вещественные числа.
Классификация функций. Это основные элементарные функции.
Степенная: у =х^c.
Показательная: у = a^x.
Логарифмическая: у = logax.
Тригонометрические.
Обратные тригонометрическим.
y = const.
1)Многочлены (полиномы): Р(Х)=А0+А1*Х+А2*X^2+ …+Аn*X^n
2)Рациональные R(x) =P9X)\Q(x), P(x) и Q(x) – многочлены.
3) Алгебраические, которые заданы с помощью суперпозиции рациональных функций, степенных с иррациональным показателем и арифметических действий.
4) Трансцендентные –элементарные функции, которые не являются алгебраическими. Все тригонометрические, обратные им, показательная, логарифмическая.