
- •Множества. Операции над множествами.
- •Грани числовых множеств. Свойство точной грани.
- •Теорема о существовании точной верхней и точной нижней граней.
- •Ограниченные и неограниченные последовательности.
- •Бесконечно большие и бесконечно малые последовательности: определение, свойства, связь между ними.
- •8. Свойства бесконечно малых последовательностей.
- •Понятие сходящейся последовательности. Предел последовательности.
- •10. О единственности предела сходящейся последовательности.
- •11.Алгебраическая сумма, произведение, частное сходящихся последовательностей.
- •Предельный переход в неравенствах.
- •13. О трех последовательностях
- •Монотонные последовательности.
- •Число е.
- •Теорема о вложенных промежутках.
- •Понятие функции и способы ее задания.
- •Предел функции в точке.
- •19.Предел функции на бесконечности (по Гейне и по Коши).
- •Теорема о пределах функции.
- •I замечательный предел.
- •II замечательный предел.
- •Бесконечно малые функции. Действия над ними.
- •Бесконечно большие функции. Связь с бесконечно малыми.
- •Сравнение бесконечно малых функций. Сравнение бесконечно больших функций.
- •25. Определение непрерывной функции в точке, на отрезке. Определение кусочно-непрерывной функции.
- •Теорема об устойчивости знака непрерывной функции.
- •I теорема Больцано – Коши.
- •II теорема Больцано – Коши.
- •Точная верхняя (нижняя) грани функции.
- •I теорема Вейерштрасса.
- •II теорема Вейерштрасса.
- •Теорема о непрерывной сложной функции.
- •Теорема о непрерывной обратной функции.
- •Понятие производной.
- •Геометрический смысл производной.
- •Понятие дифференцируемости функции.
- •38. Теорема о связи диффер. И существовании пр-ной.
- •Непрерывность и дифференцируемость функции.
- •Понятие дифференциала. Геометрический смысл.
- •Бесконечно малые, бесконечно большие функции. Связь между ними.
- •42. Свойства бесконечно малых функций.
- •43. Правила сравнения бесконечно малых и бесконечно больших функций.
- •Правила дифференцирования суммы, разности, произведения, частного двух функций.
- •Производные элементарных функций.
- •Теорема о производной обратной функции.
- •Производные обратных функций.
- •Теорема о производной сложной функции.
- •Производные высших порядков.
- •Дифференциалы высших порядков.
- •Возрастание, убывание функции в точке. Достаточное условие возрастания, убывания функции в точке.
- •Понятие локального экстремума. Необходимое условие локального экстремума.
- •Теорема Ролля.
- •Теорема Лагранжа.
- •Теорема Коши.
- •Условие монотонности функции на интервале.
- •58.Формула Тейлора.
- •I достаточное условие экстремума.
- •60. II достаточное условие экстремума.
- •61. Экстремум функции, не дифференцируемой в данной точке.
- •62. Направление выпуклости функции. Точки перегиба графика функции.
- •63.Необходимое условие точки перегиба.
- •Достаточное условие точки перегиба.
- •Асимптоты графика функции: вертикальная, горизонтальная, наклонная. Геометрический смысл наклонной асимптоты.
- •Производные сложных функций.
Достаточное условие точки перегиба.
ТЕОР: Пусть функция Y=f(x) имеет вторую производную в некоторой окрестности точки X0. Тогда, если в пределах указанной окрестности f ’’(X0) имеет разные знаки слева и справа от точки X0, то график Y=f(x) имеет перегиб в точке M(X0, f(X0)).
Док-во: Из того, что f ’’(X0) слева и справа от точки X0, имеет разные знаки, на основании теоремы о направлении выпуклости заключаем, что направление выпуклости графика функции слева и справа от точки X0 являются различными. Это и означает наличие перегиба в точке M(X0, f(X0)).
ЗАМ: теорема верна, если функция имеет II производную в окрестности точки за исключением самой точки и существует касательная к графику в этой точке.
Асимптоты графика функции: вертикальная, горизонтальная, наклонная. Геометрический смысл наклонной асимптоты.
Прямая x = X0 называется вертикальной асимптотой графика функции Y=f(x), если хотя бы одно из предельных значений lim f(x) или lim f(x) при x X0+ или X0- равно + или -.
Прямая y = A называется горизонтальной асимптотой графика функции Y=f(x) при x+ (x -) если lim f(x) =A.
Прямая Y=k x + b (k 0) называется наклонной асимптотой графика функции Y=f(x) при x+ (x - ), если функцию f(x) можно представить в виде f(x) = k x + b + (x), где (x) 0 при x+ (x - ).
Геометрический смысл наклонной асимптоты: Рассмотрим случай x+.
П
усть
M(x,
y)
– точка графика функции Y=f(x)
и пусть прямая Y=k
x
+ b
является наклонной асимптотой графика
функции при x+.
Опустим перпендикуляры из точки М
на ось абсцисс и на асимптоту.
Пересечение первого перпендикуляра с
осью ОХ назовем
точкой N(x,
Y1),
а второго – точкой P.
Тогда |MN|=|y
- Y1|=|f(x)
– (k
x
+ b)|=|
(x)
| 0
при x+.
d=|MP|=|MN|
cos
,
где
– угол между асимптотой и осью
ОХ, и
lim
d=0.
Т. о., расстояние от точки M(x, y) графика функции до асимптоты стремится к 0 при x+, т. е. график функции неограниченно приближается к асимптоте при x+.
ТЕОР: Для того, чтобы график функции Y=f(x) имел при x+ асимптоту Y=k x + b, необходимо и достаточно существование пределов lim (f(x)/x) =k и lim (f(x) - k x) =b при x+.
Док-во: Необходимость: Пусть график функции Y=f(x) имеет при x+ асимптоту Y=k x + b, т. е. для f(x) справедливо представление f(x) = k x + b + (x). Тогда при x+
lim (f(x)/x) = lim ((k x + b + (x)) /x) = lim (k + b/x + (x)/x) = k и lim (f(x) - k x) = lim (b +(x)) = b.
Достаточность: Пусть существуют пределы lim (f(x)/x) =k и lim (f(x) - k x) =b при x+. Из второго равенства, что разность f(x) - k x - b является бесконечно малой при x+. Обозначим эту бесконечно малую через (x), получим для f(x) представление: f(x) = k x + b + (x).
Для x - аналогично.
Производные сложных функций.
Y’=f(u(x))*u’(x)
(u±v)’=U’±v’
(uv)’=u’v=uv’
(u\v)’= (u’v-uv’)\v^2
(cf(x))’=cf’(x)
( c )’=0
(u^n(x))’=nu^(n-1)(x)*u’
(sinu(x))’=cosu(x)*u’
(cosu(x))’=-sinu(x)*u’
(tgu(x))’=u’\cos^2u(x)
(ctgu(x)’=u’\(-sin^2u(x))
(a^u(x))’=a^u(x)*u’
(e^u(x))’=e^u(x)*u’
(ln(x))’=u’\u(x)
(logau(x))’= u’\(u(x)lna)
(arcsinu(x))’=u’\(1-u^2(x))^1\2
(arccosu(x))’=u’\(1-u^2(x))^1\2
(arctgu(x))’=u’\(1+u^2(x))
(arcctgu(x))’=u’\(1+u^2(x))