
- •Множества. Операции над множествами.
- •Грани числовых множеств. Свойство точной грани.
- •Теорема о существовании точной верхней и точной нижней граней.
- •Ограниченные и неограниченные последовательности.
- •Бесконечно большие и бесконечно малые последовательности: определение, свойства, связь между ними.
- •8. Свойства бесконечно малых последовательностей.
- •Понятие сходящейся последовательности. Предел последовательности.
- •10. О единственности предела сходящейся последовательности.
- •11.Алгебраическая сумма, произведение, частное сходящихся последовательностей.
- •Предельный переход в неравенствах.
- •13. О трех последовательностях
- •Монотонные последовательности.
- •Число е.
- •Теорема о вложенных промежутках.
- •Понятие функции и способы ее задания.
- •Предел функции в точке.
- •19.Предел функции на бесконечности (по Гейне и по Коши).
- •Теорема о пределах функции.
- •I замечательный предел.
- •II замечательный предел.
- •Бесконечно малые функции. Действия над ними.
- •Бесконечно большие функции. Связь с бесконечно малыми.
- •Сравнение бесконечно малых функций. Сравнение бесконечно больших функций.
- •25. Определение непрерывной функции в точке, на отрезке. Определение кусочно-непрерывной функции.
- •Теорема об устойчивости знака непрерывной функции.
- •I теорема Больцано – Коши.
- •II теорема Больцано – Коши.
- •Точная верхняя (нижняя) грани функции.
- •I теорема Вейерштрасса.
- •II теорема Вейерштрасса.
- •Теорема о непрерывной сложной функции.
- •Теорема о непрерывной обратной функции.
- •Понятие производной.
- •Геометрический смысл производной.
- •Понятие дифференцируемости функции.
- •38. Теорема о связи диффер. И существовании пр-ной.
- •Непрерывность и дифференцируемость функции.
- •Понятие дифференциала. Геометрический смысл.
- •Бесконечно малые, бесконечно большие функции. Связь между ними.
- •42. Свойства бесконечно малых функций.
- •43. Правила сравнения бесконечно малых и бесконечно больших функций.
- •Правила дифференцирования суммы, разности, произведения, частного двух функций.
- •Производные элементарных функций.
- •Теорема о производной обратной функции.
- •Производные обратных функций.
- •Теорема о производной сложной функции.
- •Производные высших порядков.
- •Дифференциалы высших порядков.
- •Возрастание, убывание функции в точке. Достаточное условие возрастания, убывания функции в точке.
- •Понятие локального экстремума. Необходимое условие локального экстремума.
- •Теорема Ролля.
- •Теорема Лагранжа.
- •Теорема Коши.
- •Условие монотонности функции на интервале.
- •58.Формула Тейлора.
- •I достаточное условие экстремума.
- •60. II достаточное условие экстремума.
- •61. Экстремум функции, не дифференцируемой в данной точке.
- •62. Направление выпуклости функции. Точки перегиба графика функции.
- •63.Необходимое условие точки перегиба.
- •Достаточное условие точки перегиба.
- •Асимптоты графика функции: вертикальная, горизонтальная, наклонная. Геометрический смысл наклонной асимптоты.
- •Производные сложных функций.
38. Теорема о связи диффер. И существовании пр-ной.
ТЕОР: Для того, чтобы функция Y=f(x) была дифференцируема в точке X0, необходимо и достаточно, чтобы она имела в этой точке конечную производную.
Док-во: Необходимость: Пусть функция Y=f(x) дифференцируема в точке X0, т. е. ее приращение представимо в виде Y=AX+(X)X. Поделим это равенство на X, получим Y/X=А+(X). Переходя к пределу при X0, имеем lim (Y/X)=lim (А+(X))=A. Производная в точке X0 существует и f ’(X0)=А.
Достаточность: Пусть существует конечная производная f ’(X0), т. е. lim (Y/X)= f ’(X0). Обозначим f’(X0)=А, тогда функция (X)=Y/X - А является бесконечно малой при X0. Из последнего равенства имеем Y=AX+(X) X, где lim (X)=0. Получено представление Y=AX+(X)X. Функция Y=f(x) дифференцируема в точке X0.
Непрерывность и дифференцируемость функции.
ТЕОР: Если функция Y=f(x) дифференцируема в данной точке X0, то она и непрерывна в этой точке.
Док-во: Так как функция Y=f(x) дифференцируема в точке X0, то ее приращение в этой точке можно представить в виде Y=AX+(X)X. Тогда, переходя к пределу при X0 получаем limY=AlimX+lim (X)limX=0, что означает непрерывность функции Y=f(x) в точке X0 согласно определению.
Понятие дифференциала. Геометрический смысл.
Пусть функция Y=f(x) дифференцируема в точке X0, т. е. ее приращение Y в этой точке представимо в виде: Y=AX+(X)X, где lim (X)=0. Слагаемое AX является при X0 бесконечно малой одного порядка с X (при А0), оно линейно относительно X. Слагаемое (X) при X0 бесконечно малая более высокого порядка, чем X, так как lim ((X) X)/X = lim (X)=0. Т. о. первое слагаемое является главной частью приращения функции.
ОПР1: Дифференциалом функции Y=f(x) в точке X0 называется главная, линейная относительно X, часть приращения функции в этой точке. Обозначается dY= AX.
Если А=0, то AX не является главной частью приращения Y. Однако и в этом случае по определению дифференциал функции в точке X0 равен AX, т. е. dY=0. Можно записать дифференциал в виде dY= f ’(X0) X.
Дифференциалом независимой переменной называют приращение этой переменной dX=X. Соотношение имеет вид dY= f ’(X0) dX. Можно вычислить f ’(X0): f ’(X0)=dY/dX.
П
усть
точка М на графике
соответствует значению аргумента
X0,
а точка Р – значению
аргумента Х0+Х.
Проведем касательную MS
к графику в точке М.
Обозначим через
угол, образованный касательной с осью
ОХ. Пусть MN
|| OX,
PN
|| OY
и Q –
точка пересечения касательной с PN.
Тогда приращение функции равно величине
отрезка PN.
Из треугольника MQN
имеем: QN=
tg
X=
f
’(X0)
X=
dY
Дифференциал функции равен величине
отрезка QN.
Видно, что PN
и QN
различны. Т. о. дифференциал dY
функции f(x)
в точке X0
равен приращению ординаты
касательной MS
к графику в точке М.
Бесконечно малые, бесконечно большие функции. Связь между ними.
Бесконечно малые функции(бмф). Определение. Функция f(x) называется бесконечно малой в точке х=а, если предел в этой точке равен нулю: lim f(x)=0 (x->a). Аналогично определяются бесконечно малые при ->∞,±∞,a+.a-.
Если функция f(x) имеет предел А в точке х=а, то функция α(х) = f(x) –А является бмф в точке а.
Док-во. Действительно из теоремы вытекает, что lim α(х)(x->a)=lim f(x) – lim А(x->a)= А-А=0, откуда согласно определению и следует, что α(х) – бмф в точке а.
Мы получаем спец представление для функций, имеющих предел в точке х=а, через бмф: f(x) = A + α(х).
Бесконечно большие функции (ббф). Опре-е. Функция f(x) называется ббф в точке а, если для любой сход к а последовательности {xn} значений аргумента соответствующая последовательность {f(xn)} значений аргумента является бб последовательностью.
В этом случае пишут lim f(x) = ∞ (x->a) (lim f(x) = +∞ или lim f(x) = -∞ (x->a)) и говолрят, что функция имеет в точке а бесконечный предел (±∞). По аналогии с конечными односторонними пределами определены и односторонние бесконечные пределы: lim f(x) = +∞ (x->a+), lim f(x) = -∞ (x->a-), lim f(x) = +∞ (x->a-), lim f(x) = -∞ (x->a+). Аналогично определяются бесконечно большие при ->∞,±∞.
между бм и бб функциями существует та же связь, что и между соответ последовательностями, т.е. α(х) – бмф при x->a , то f(x) – 1\ α(х) – бб и наоборот. Это утверждение можно доказать например используя первое определение предела функции в точке и соответствующие теоремы о бм и бб последовательностях.