
- •Множества. Операции над множествами.
- •Грани числовых множеств. Свойство точной грани.
- •Теорема о существовании точной верхней и точной нижней граней.
- •Ограниченные и неограниченные последовательности.
- •Бесконечно большие и бесконечно малые последовательности: определение, свойства, связь между ними.
- •8. Свойства бесконечно малых последовательностей.
- •Понятие сходящейся последовательности. Предел последовательности.
- •10. О единственности предела сходящейся последовательности.
- •11.Алгебраическая сумма, произведение, частное сходящихся последовательностей.
- •Предельный переход в неравенствах.
- •13. О трех последовательностях
- •Монотонные последовательности.
- •Число е.
- •Теорема о вложенных промежутках.
- •Понятие функции и способы ее задания.
- •Предел функции в точке.
- •19.Предел функции на бесконечности (по Гейне и по Коши).
- •Теорема о пределах функции.
- •I замечательный предел.
- •II замечательный предел.
- •Бесконечно малые функции. Действия над ними.
- •Бесконечно большие функции. Связь с бесконечно малыми.
- •Сравнение бесконечно малых функций. Сравнение бесконечно больших функций.
- •25. Определение непрерывной функции в точке, на отрезке. Определение кусочно-непрерывной функции.
- •Теорема об устойчивости знака непрерывной функции.
- •I теорема Больцано – Коши.
- •II теорема Больцано – Коши.
- •Точная верхняя (нижняя) грани функции.
- •I теорема Вейерштрасса.
- •II теорема Вейерштрасса.
- •Теорема о непрерывной сложной функции.
- •Теорема о непрерывной обратной функции.
- •Понятие производной.
- •Геометрический смысл производной.
- •Понятие дифференцируемости функции.
- •38. Теорема о связи диффер. И существовании пр-ной.
- •Непрерывность и дифференцируемость функции.
- •Понятие дифференциала. Геометрический смысл.
- •Бесконечно малые, бесконечно большие функции. Связь между ними.
- •42. Свойства бесконечно малых функций.
- •43. Правила сравнения бесконечно малых и бесконечно больших функций.
- •Правила дифференцирования суммы, разности, произведения, частного двух функций.
- •Производные элементарных функций.
- •Теорема о производной обратной функции.
- •Производные обратных функций.
- •Теорема о производной сложной функции.
- •Производные высших порядков.
- •Дифференциалы высших порядков.
- •Возрастание, убывание функции в точке. Достаточное условие возрастания, убывания функции в точке.
- •Понятие локального экстремума. Необходимое условие локального экстремума.
- •Теорема Ролля.
- •Теорема Лагранжа.
- •Теорема Коши.
- •Условие монотонности функции на интервале.
- •58.Формула Тейлора.
- •I достаточное условие экстремума.
- •60. II достаточное условие экстремума.
- •61. Экстремум функции, не дифференцируемой в данной точке.
- •62. Направление выпуклости функции. Точки перегиба графика функции.
- •63.Необходимое условие точки перегиба.
- •Достаточное условие точки перегиба.
- •Асимптоты графика функции: вертикальная, горизонтальная, наклонная. Геометрический смысл наклонной асимптоты.
- •Производные сложных функций.
I теорема Вейерштрасса.
ТЕОР: Если функция f(x) определена и непрерывна на сегменте [a, b], то она ограничена на этом сегменте.
Док-во: ПП: пусть f(x) не ограничена на [a, b]. Разделим сегмент пополам, тогда, по крайней мере, на одном из сегментов функция не ограничена. Обозначим этот сегмент [a1, b1]. Продолжим процесс деления неограниченно получим последовательность [a, b] [a1, b1] [a2, b2] … [an, bn]… Это последовательность вложенных отрезков, на каждом из них функция не ограничена (по предположению). По построению bn - an =(b – a)/2^n 0 при n. Тогда существует единственная точка С принадлежащая всем этим отрезкам. Функция f(x) определена и непрерывна на [a, b]. Она непрерывна в точке С, но тогда (лемма) существует окрестность точки С, в которой f(x) ограничена. При большом n в эту окрестность попадает сегмент [an, bn], на котором функция также ограничена. Противоречие. Она ограничена на этом сегменте.
ЗАМ: теорема неверна, если сегмент заменить на интервал.
II теорема Вейерштрасса.
ТЕОР: Если функция f(x) непрерывна на сегменте [a, b], то она достигает на этом сегменте своих точных граней, т. е. существуют точки X1, X2[a, b] такие, что f(X1)=M=sup f(X2)=m=inf f(x) на сегменте [a, b].
Док-во: Так как f(x) непрерывна на [a, b], то она ограничена на этом отрезке (1 Т В). Существует точная верхняя М и точная нижняя m грани функции f(x) на отрезке [a, b]. Докажем, что функция достигает М, т. е. существует точка Х1[a, b], что f(X1)=M. Тогда для х[a, b] выполняется неравенство f(x)<M. Построим вспомогательную функцию F(x)=1\(M-f(x))>0 для х[a, b]. Функция F(x) непрерывна (как частное непрерывных функций). Но тогда (по 1 Т В) F(x) ограничена, т. е. найдется число >0 такое, что х[a, b] 1\(-f(x)) или f(x)M – 1/.. Т. о. число М – 1/ является верхней гранью f(x) на отрезке [a, b]. Но это противоречит тому, что М – точная верхняя грань f(x) на отрезке [a, b]. Существует точка X1[a, b], в которой f(x)=M. (Нижняя грань аналогично)
ЗАМ: после доказательства факта, что непрерывная на [a, b] функция достигает своих точной нижней и верхней граней, точную верхнюю грань принято называть максимальным значением, а точную нижнюю грань – минимальным значением. Теорема формулируется:
Непрерывная на [a, b] функция принимает на нем свое min и max значение.
Теорема о непрерывной сложной функции.
ТЕОР: Пусть функции Z=(x) непрерывна в точке X0, а функция Y=f(z) непрерывна в точке Z0. Тогда сложная функция Y=f((x)) непрерывна в точке X0.
Док-во: Пусть Х1, Х2, Х3,…, Хn,… - последовательность из множества Х, сходится к точке Х0. Тогда в силу непрерывности функции Z=(x) в точке Х0 имеем lim Zn = lim (Xn) = (X0) = Z0 при n, то есть соответствующая последовательность точек Z1, Z2, Z3,…, Zn,… сходится к точке Z0. В силу непрерывности функции f(z) в точке Z0 имеем lim f(Zn) = f(Z0), т. е. lim f[(Xn)] = f[(X0)]. Получаем, что предел функции f((x)) в точке Х0 равен значению функции в точке Х0. Функция непрерывна.