
- •Экзаменационный билет №1
- •Работа синхронной машины в режиме синхронного компенсатора. Векторные диаграммы.
- •Cosφ современных генераторов. Определение. Нормируемые значения.
- •Асинхронный режим с.Г. Общая характеристика процесса.
- •Экзаменационный билет №2
- •Угловая характеристика реактивной мощности синхронного генератора.
- •Особенности исполнения современных турбогенераторов.
- •Способы включения генераторов в сеть.
- •Экзаменационный билет №3
- •Включение генератора способом точной синхронизации.
- •Статическая перегружаемость. Определение. Нормируемые значения.
- •Перегрузки генераторов и их ограничение.
- •Экзаменационный билет №4
- •П ринцип действия и конструкция синхронного генератора.
- •Угловая характеристика активной мощности с.Г.
- •Включение генератора способом самосинхронизации.
- •Экзаменационный билет №5
- •Способы включения генераторов в сеть.
- •Работа синхронной машины в режиме генератора и двигателя.
- •Экзаменационный билет №6
- •Системы охлаждения современных генераторов.
- •Построение диаграммы мощностей синхронного генератора.
- •Способы включения генераторов в сеть.
- •Экзаменационный билет №7
- •Угловая характеристика активной мощности с.Г.
- •Системы возбуждения генераторов. Назначение. Требования и классификация.
- •Cosφ современных генераторов. Определение. Нормируемые значения.
- •Экзаменационный билет №8
- •Включение генератора способом синхронизации.
- •Работа синхронной машины в режиме синхронного компенсатора.
- •Требования, предъявляемые к агп.
- •Экзаменационный билет №9
- •Статическая перегружаемость. Определение. Нормируемое значение.
- •Системы охлаждения современных турбогенераторов.
- •Включение генератора способом точной синхронизации.
- •Экзаменационный билет №10
- •Принцип действия синхронного генератора. Элементы конструкции.
- •Системы возбуждения генераторов. Назначение. Требования к системам возбуждения.
- •Угловая характеристика активной мощности с.Г.
- •Экзаменационный билет №11
- •Допустимость работы турбогенератора в асинхронном режиме. Условия работы генераторов в асинхронном режиме.
- •Перечислите наиболее вероятные анормальные режимы работы турбогенераторов и их причины.
- •Угловая характеристика активной мощности с.Г.
- •Экзаменационный билет №12
- •Диаграмма мощностей турбогенератора.
- •Требования, предъявляемые к агп.
- •Влияние нарушения симметрии электрической сети на турбогенераторы.
- •Экзаменационный билет №13
- •Режимы генератора, включенного на шины энергосистемы бесконечной мощности. Угловая характеристика реактивной мощности.
- •Способы включения генератора в сеть.
- •Cosφ современных генераторов. Определение. Нормируемые значения.
- •Экзаменационный билет №14
- •Режимы генератора, включенного на шины энергосистемы бесконечной мощности. Угловая характеристика реактивной мощности.
- •Принцип действия с.Г., элементы конструкции.
- •Экзаменационный билет №15
- •Работа синхронной машины в режиме генератора и двигателя. Векторные диаграммы.
- •Пусковые режимы генераторов. Особенности способа самосинхронизации.
- •Статическая перегружаемость. Определение. Нормируемое значение.
- •Экзаменационный билет №16
- •Основные параметры синхронных генераторов: номинальное напряжение, ток и напряжение возбуждения.
- •Процесс гащения магнитного поля синхронных машин. Оптимальные условия гашения поля.
- •13.1 Определение условий оптимального гашения
- •Способы включения генераторов в сеть.
- •Экзаменационный билет №17
- •Основные параметры синхронных генераторов: коэффициент мощности.
- •Автоматическое гашение поля генератора. Требования, предъявляемые к агп.
- •Построение диаграммы мощностей синхронного генератора.
- •Экзаменационный билет №18
- •Принцип действия синхронного генератора. Элементы конструкции.
- •Принцип действия и конструкция синхронного генератора.
- •Процесс гащения магнитного поля синхронных машин. Оптимальные условия гашения поля.
- •Влияние нарушения симметрии электрической сети на турбогенераторы.
- •Экзаменационный билет №19
- •Работа синхронной машины в режиме синхронного компенсатора. Векторные диаграммы.
- •Работа синхронной машины в режиме генератора и двигателя.
- •Cosφ современных генераторов. Определение. Нормируемые значения.
- •Экзаменационный билет №20
- •Статическая перегружаемость. Определение. Нормируемое значение.
- •Cosφ современных генераторов. Определение. Нормируемые значения.
- •Экзаменационный билет №21
- •Построение диаграммы мощностей синхронного генератора.
- •Угловая характеристика реактивной мощности синхронного генератора.
- •Включение генератора способом точной синхронизации.
- •Экзаменационный билет №22
- •Включение генератора способом синхронизации.
- •Принцип действия и конструкция синхронного генератора.
- •Принцип действия и конструкция синхронного генератора.
- •Способы включения генератора в сеть.
- •Экзаменационный билет №23
- •Работа синхронной машины в режиме синхронного компенсатора.
- •Включение генератора способом синхронизации.
- •Способы включения генератора в сеть.
- •Экзаменационный билет №24
- •Допустимость работы турбогенератора в асинхронном режиме. Условия работы генераторов в асинхронном режиме.
- •Перечислите наиболее вероятные анормальные режимы работы турбогенераторов и их причины.
- •Cosφ современных генераторов. Определение. Нормируемые значения.
- •Экзаменационный билет №25
- •Системы охлаждения современных генераторов.
- •Перечислите наиболее вероятные анормальные режимы работы турбогенераторов и их причины.
- •Угловая характеристика активной мощности с.Г.
- •Экзаменационный билет №26
- •Системы возбуждения генераторов. Назначение. Требования и классификация.
- •Требования, предъявляемые к агп.
- •Угловая характеристика активной мощности с.Г.
- •Экзаменационный билет №27
- •Автоматическое гашение поля генератора. Требования, предъявляемые к агп.
- •Статическая перегружаемость. Определение. Нормируемое значение.
- •Способы включения генераторов в сеть.
- •Экзаменационный билет №28
- •Включение генератора способом синхронизации.
- •Процесс гащения магнитного поля синхронных машин. Оптимальные условия гашения поля.
- •Cosφ современных генераторов. Определение. Нормируемые значения.
- •Экзаменационный билет №29
- •Работа синхронной машины в режиме генератора и двигателя. Векторные диаграммы.
- •Автоматическое гашение поля генератора. Требования, предъявляемые к агп.
- •Построение диаграммы мощностей синхронного генератора.
- •Экзаменационный билет №30
- •1.Перечислите наиболее вероятные анормальные режимы работы турбогенераторов и их причины. Напряжения
- •15.4 Короткие замыкания в электрической сети
- •Требования, предъявляемые к агп.
Экзаменационный билет №18
Принцип действия синхронного генератора. Элементы конструкции.
Принцип действия и конструкция синхронного генератора.
Рис. 1.1. Функциональная схема синхронного генератора
На рис. 1.1 представлена функциональная схема синхронного генератора. На статоре 1 расположена трёхфазная обмотка, принципиально не отличающаяся от аналогичной обмотки асинхронной машины. На роторе расположен электромагнит с обмоткой возбуждения 2, получающей питание постоянным током, как правило, через скользящие контакты, осуществляемые посредством двух контактных колец, расположенных на роторе, и двух неподвижных щёток. Приводным двигателем (ПД), в качестве которого используется турбина, двигатель внутреннего сгорания либо другой источник механической энергии, ротор генератора приводится во вращение с синхронной скоростью. При этом магнитное поле электромагнита ротора также вращается с синхронной скоростью и индуцирует в трёхфазной обмотке статора переменные ЭДС EA , EB и EC , которые будучи одинаковыми по значению и сдвинутыми по фазе относительно
друг друга на 1/3 периода (120 эл. град), образуют симметричную трёхфазную систему ЭДС.C подключением нагрузки к зажимам обмотки статора С1, С2 и С3 в фазах обмотки статора появляются токи IA, IB, IC , которые создают вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора. Таким образом, в синхронной машине магнитное поле статора и ротор вращаются синхронно.
Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе
e = Bd × 2lw1v = 2pBd lw1D1n1,где Bd – магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл; l – активная длина одной пазовой стороны обмотки статора, т.е. длина сердечника статора, м; v =pD1n1 – линейная скорость движения полюсов ротора относительно статора, м/с; 1 D – внутренний диаметр сердечника статора, м.Формула ЭДС показывает, что при неизменной частоте вращения ротора n1 форма графика переменной ЭДС обмотки якоря (статора) определяется исключительно законом распределения магнитной индукции в зазоре между статором и полюсами ротора Bd . Если график магнитной индукции в зазоре представляет собой синусоиду Bd = Bmax sina , то ЭДС генератора также будет синусоидальной. В
синхронных машинах всегда стремятся получить распределение индукции в зазоре как можно ближе к синусоидальному.
Синхронная машина состоит из неподвижной части – статора и вращающейся части – ротора. Статоры синхронных машин в принципе не отличаются от статоров асинхронных двигателей, т.е. состоят из корпуса, сердечника и обмотки.Конструктивное исполнение статора синхронной машины может быть различным в зависимости от назначения и габаритов машины. Так, в многополюсных машинах большой мощности при наружном диаметре сердечника статора более 900 мм пластины сердечника делают из отдельных сегментов, которые при сборке образуют цилиндр сердечника статора. Для удобства транспортировки и монтажа корпуса статоров крупногабаритных синхронных машин делают разъёмными. Роторы синхронных машин могут иметь две принципиально различающиеся конструкции: явнополюсную и неявнополюсную (рис. 1.5).
Рис. 1.5. Роторы синхронных машин:
а – явнополюсный; б – неявнополюсный
Если приводным двигателем является гидравлическая турбина, то синхронный генератор называют гидрогенератором. Гидравлическая турбина обычно развивает небольшую частоту вращения (60 –500 об/мин), поэтому для получения переменного тока промышленной частоты (50 Гц) в гидрогенераторе применяют ротор с большим числом полюсов. Роторы гидрогенераторов имеют явнополюсную конструкцию, при которой каждый полюс выполняют в виде отдельного узла, состоящего из сердечника 1, полюсного наконечника 2 и полюсной катушки 3 (рис. 1.5, а). Все полюсы ротора закреплены на ободе 4, являющемся также ярмом магнитной системы машины, в ко-
тором замыкаются потоки полюсов. Гидрогенераторы обычно изготавливают с вертикальным расположением вала. При таком расположении ротора синхронной машины на его подшипники действуют значительные осевые силы, создаваемые массой ротора генератора и колесом гидротурбины. Поэтому непременным элементом вертикальных гидрогенераторов является подпятник.