
- •Ответы на зачет по Начертательной геометрии.
- •Вопрос 1
- •Вопрос 2.
- •Вопрос 3.
- •Вопрос 4.
- •Вопрос 5.
- •Вопрос 6.
- •Вопрос 7.
- •Вопрос 8.
- •Вопрос 9.
- •Вопрос 10.
- •Вопрос 11.
- •Вопрос 12.
- •Вопрос 13.
- •Вопрос 14.
- •Вопрос 15.
- •Вопрос 16.
- •Вопрос 18.
- •Вопрос 19.
- •Вопрос 20.
- •Вопрос 21.
- •Вопрос 22.
- •Вопрос 23.
- •Вопрос 24.
- •Вопрос 25.
- •Вопрос 26.
- •Вопрос 27.
- •Вопрос 28.
- •Вопрос 29.
- •Вопрос 30.
- •Вопрос 31.
- •Вопрос 32.
- •Вопрос 33.
- •Вопрос 34.
- •Вопрос 35.
- •Вопрос 36.
- •Вопрос 38.
- •Вопрос 39.
- •Вопрос 40.
- •Вопрос 41.
- •1. Одним из способов преобразования комплексного чертежа привести обе заданные геометрические фигуры (или одну из них) в положение, перпендикулярное какой-либо плоскости проекций.
- •2. Построить проекцию искомого отрезка на эту плоскость.
- •Вопрос 42.
- •Вопрос 43.
- •Вопрос 44.
- •Вращение точки
- •Вопрос 45.
- •Вопрос 46.
- •Вопрос 47.
- •Вопрос 48.
- •Вопрос 49.
- •Вопрос 50.
- •Вопрос 51.
- •Вопрос 52.
- •Вопрос 53.
- •Вопрос 54.
- •Вопрос 55.
- •Вопрос 56.
- •Вопрос 57.
- •Вопрос 58.
- •Вопрос 59.
- •Вопрос 60.
- •Вопрос 61.
- •Вопрос 62.
- •Вопрос 63.
- •Вопрос 64.
- •Вопрос 65.
- •Вопрос 66.
- •Вопрос 67.
- •Вопрос 68.
- •Вопрос 69.
- •Вопрос 70.
Вопрос 30.
Плоскость общего положения
Плоскость, которая занимает произвольное положение по отношению к плоскости проекций (углы наклона этой плоскости к плоскостям проекций - произвольные, но отличные от 0° и 90°) называется плоскостью общего положения (рис. 2.12.а).
На комплексном чертеже следы плоскости общего положения составляют с осью проекций также произвольные углы.
Рассмотрим изображение на комплексном чертеже и свойства плоскостей частного положения: плоскости, перпендикулярные и параллельные плоскостям проекций.
Вопрос 31.
Плоскости частного положения - это плоскости, параллельные или перпендикулярные к плоскостям проекций.
Плоскости частного положения параллельны или перпендикулярны плоскостям проекций.
Плоскостью частного положения называется плоскость, параллельная или перпендикулярная по отношению к одной из плоскостей проекций. Плоскости частного положения подразделяют на проецирующие и плоскости уровня.
Плоскостью частного положения будем называть плоскости, которые параллельны или перпендикулярны хотя бы одной из плоскостей проекций. В системе трех плоскостей проекций они делятся на две группы.
Для плоскостей частного положения соответствующие прямые уровня одновременно являются и проецирующими. Например, у горизонтально-проекцирующей плоскости ее фронтали одновременно являются и горизонтально-проецирующими прямыми.
К плоскостям частного положения относятся проектирующие плоскости, они перпендикулярны одной или двум плоскостям проекций.
Прямые и плоскости частного положения разделяются на проецирующие прямые и плоскости, перпендикулярные плоскости проекций, и на прямые и плоскости уровня, параллельные плоскости проекций. Нетрудно видеть, что каждая проецирующая прямая является вместе с тем и прямой уровня, а каждая плоскость уровня - и проецирующей плоскостью.
Рассмотрим применение способа плоскостей частного положения на двух примерах.
Какие плоскости называют плоскостями общего и частного положения.
Если секущая плоскость - плоскость частного положения, то задача упрощается, так как одна проекция линии пересечения плоскости с кривой поверхностью уже имеется и совпадает со следом секущей плоскости.
Если секущая плоскость - плоскость частного положения, то задача упрощается, так 1ЩграддОя проекция линии пересечения плоскости с кривой поверхностью уже имеется и совпадает со следом секущей плоскости.
Точка и прямая в плоскостях частного положения, упро - в пл скости щается, как будет показано ниже.
Задание на чертеже прямых и плоскостей частного положения значительно упрощает решение задач и делает его выполнимым при помощи простых замеров или простейших графических построений.
Пример:
Вопрос 32.
Принадлежность точки и прямой к плоскости
ПРИНАДЛЕЖНОСТЬ ПРЯМОЙ ПЛОСКОСТИ |
|
Сформулируем условие принадлежности прямой плоскости как аксиомы:
Аксиома 1. Прямая принадлежит плоскости, если две её точки принадлежат этой плоскости.
Аксиома 2. Прямая принадлежит плоскости, если имеет с плоскостью одну общую точку и параллельна какой-либо прямой расположенной в этой плоскости.
Точка принадлежит плоскости, если она принадлежит какой-нибудь прямой, лежащей в этой плоскости.
Из элементарной геометрии известно, что прямая принадлежит плоскости, если:
oна проходит через две точки, принадлежащие плоскости;
oна проходит через 1 точку, принадлежащую плоскости, и параллельна прямой, лежащей в плоскости.