
- •Ответы на зачет по Начертательной геометрии.
- •Вопрос 1
- •Вопрос 2.
- •Вопрос 3.
- •Вопрос 4.
- •Вопрос 5.
- •Вопрос 6.
- •Вопрос 7.
- •Вопрос 8.
- •Вопрос 9.
- •Вопрос 10.
- •Вопрос 11.
- •Вопрос 12.
- •Вопрос 13.
- •Вопрос 14.
- •Вопрос 15.
- •Вопрос 16.
- •Вопрос 18.
- •Вопрос 19.
- •Вопрос 20.
- •Вопрос 21.
- •Вопрос 22.
- •Вопрос 23.
- •Вопрос 24.
- •Вопрос 25.
- •Вопрос 26.
- •Вопрос 27.
- •Вопрос 28.
- •Вопрос 29.
- •Вопрос 30.
- •Вопрос 31.
- •Вопрос 32.
- •Вопрос 33.
- •Вопрос 34.
- •Вопрос 35.
- •Вопрос 36.
- •Вопрос 38.
- •Вопрос 39.
- •Вопрос 40.
- •Вопрос 41.
- •1. Одним из способов преобразования комплексного чертежа привести обе заданные геометрические фигуры (или одну из них) в положение, перпендикулярное какой-либо плоскости проекций.
- •2. Построить проекцию искомого отрезка на эту плоскость.
- •Вопрос 42.
- •Вопрос 43.
- •Вопрос 44.
- •Вращение точки
- •Вопрос 45.
- •Вопрос 46.
- •Вопрос 47.
- •Вопрос 48.
- •Вопрос 49.
- •Вопрос 50.
- •Вопрос 51.
- •Вопрос 52.
- •Вопрос 53.
- •Вопрос 54.
- •Вопрос 55.
- •Вопрос 56.
- •Вопрос 57.
- •Вопрос 58.
- •Вопрос 59.
- •Вопрос 60.
- •Вопрос 61.
- •Вопрос 62.
- •Вопрос 63.
- •Вопрос 64.
- •Вопрос 65.
- •Вопрос 66.
- •Вопрос 67.
- •Вопрос 68.
- •Вопрос 69.
- •Вопрос 70.
Вопрос 5.
Позиционные задачи, это те в которых определяется взаимное положение, например, определить взаимное положение прямой и плоскости, плоскости и поверхности, двух плоскостей, все это позиционные задачи.
К метрическим относятся задачи, связанные с определением истинных (натуральных) величин расстояний, углов и плоских фигур на комплексном чертеже. Можно выделить три группы метрических задач
1. Группа задач, включающих в себя определение расстояний от точки до другой точки; от точки до прямой; от точки до плоскости; от точки до поверхности; от прямой до другой прямой; от прямой до плоскости; от плоскости до плоскости. Причем расстояние от прямой до плоскости и между плоскостями измеряется в тех случаях, когда они параллельны.
2. Группа задач, включающая определение углов между пересекающимися или скрещивающимися прямыми, между прямой и плоскостью, между плоскостями (имеется в виду определение величины двухгранного угла).
3. Группа задач, связанная с определением истинной величины плоской фигуры и части поверхности (развертки).
Приведенные задачи могут быть решены с применением различных способов преобразования чертежа. В основе решения метрических задач лежит свойство прямоугольного проецирования, заключающееся в том, что любая геометрическая фигура на плоскость проекций проецируется в натуральную величину, если она лежит в плоскости, параллельной этой плоскости проекций. Решение задач значительно упрощается, если хотя бы одна из геометрических фигур, участвующих в задачах, занимает частное положение. Если одна из геометрических фигур не занимает частного положения, необходимо выполнить определенные построения, позволяющие провести одну из них в это положение.
Вопрос 6.
1. Проекция точки есть точка (рис. 1.9).
Рис. 1.9
2. Проекция прямой в общем случае есть прямая (рис. 1.10).
Если прямая располагается перпендикулярно какой-либо плоскости проекций (такая прямая называется проецирующей), то на эту плоскость она проецируется в виде точки (рис. 1.10).
3.
Если точка лежит на прямой, то ее проекция
располагается на соответствующей
проекции этой же прямой А
m
А
m (рис.
1.11).
|
|
Рис. 1.10 |
Рис. 1.11 |
Примечание. Первые 3 свойства проекций являются общими для центрального и параллельного проецирования.
4. Если точка делит отрезок прямой в каком-либо отношении, то ее проекция делит проекцию отрезка в том же самом отношении (рис. 1.12).
Рис. 1.12
5. Если прямая параллельна плоскости проекций, то на эту плоскость эта прямая проецируется без искажений (рис.1.13).
m II
m = m,
m II
[
А В ]
= [ AB ].
Если плоская фигура параллельна плоскости проекций, то на эту плоскость она проецируется без искажения.
6. Если прямые в пространстве пересекаются, то их проекции также пересекаются (рис. 1.14).
m
n =
C
m
п
с
|
|
Рис. 1.13 |
Рис. 1.14 |
7. Если прямые в пространстве параллельны, то их проекции также параллельны (рис. 1.15).
a II b а II b
Примечание. Общими для косоугольного и прямоугольного проецирования являются свойства 4, 5, 6.
8. Если одна сторона прямого угла параллельна плоскости проекций, то на эту плоскость прямой угол проецируется без искажений (рис. 1.16).
ABC = 90° ; AB|| ; BC|| ; А В С = 90° ;
ABD
= 90° ; AB|| ;
BD
;
А В D =
90° .
|
|
Рис. 1.15 |
Рис. 1.16 |
Примечание. Свойство 8-е только для ортогонального проецирования.
9. Параллельный перенос фигуры в пространстве или плоскости проекций не изменяет вида и размеров проекции фигуры.
преимущества:
а) простоту графических построений для определения ортогональных проекций точек;
б) возможность при определенных условиях сохранить на проекциях форму и размеры проецируемой фигуры.
Указанные преимущества обеспечили широкое применение ортогонального проецирования в технике, в частности для составления машиностроительных чертежей.
Сущность метода ортогонального проецирования. Его приемущества.
Как уже было сказано выше ортогональное проецирование — это частный случай параллельного проецирования. При ортогональном проецировании проецирующие лучи перпендикулярны к плоскости проекций.
Свойства ортогонального проецирования:
Все свойства параллельного проецирования выполнимы и для ортогонального проецирования. Однако ортогональные проекции обладают ещё некоторыми свойствами.
Теорема.
Если одна из сторон прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то угол на эту плоскость проецируется в виде прямого угла.
Ортогональное проецирование обеспечивает простоту геометрических построений при определении ортогональных проекций точек, а так же возможность сохранять на проекциях форму и размеры проецируемой фигуры. Эти достоинства обеспечили ортогональному проецированию широкое применение в техническом черчении.
Рассмотренные методы проецирования позволяют решить прямую задачу начертательной геометрии, т. е. по оригиналу построить плоский чертёж. Однако, полученные таким образом проекции на одну плоскость, дают неполное представление о предмете, его форме и положении в пространстве, т. е. такой чертёж не обладает свойством обратимости.
Чтобы получить обратимый чертеж, т.е. чертеж, дающий полное представление о форме, размерах и положении оригинала в пространстве, однокартинный чертеж дополняют. В зависимости от дополнения существуют различные виды обратимых чертежей.