Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на зачет по Начертательной геометрии.docx
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
1.44 Mб
Скачать

Вопрос 33.

1. Горизонтали h - прямые, лежащие в данной плоскости и параллельные горизонтальной плоскости проекций

2. Фронтали f - прямые, расположенные в плоскости и параллельные фронтальной плоскости проекций

3. Профильные прямые р - прямые, которые находятся в данной плоскости и параллельны профильной плоскости проекций.

4. Прямые, принадлежащие плоскости и образующие с плоскостью проекций наибольший угол называются линиями наибольшего наклона данной плоскости к плоскости проекций.

5. Линия наибольшего наклона к горизонтальной плоскости проекций называется линией ската.

Вопрос 34.

Плоскости, параллельные плоскостям проекций

(плоскости уровня)

1. Горизонтальная плоскость γ || π1.

Плоскость γ, параллельная плоскости π1, называется горизонтальной (рис. 2.15).

Любая фигура, расположенная в такой плоскости, проецируется на горизонтальную плоскость проекций в натуральную величину (Δ А1В1С1 = ΔАВС, рис. 17). Фронтальный след этой плоскости параллелен оси Х (f0g | | Х).

2. Фронтальная плоскость δ | | π2.

Плоскость δ, параллельная плоскости π2, называется фронтальной.

Рис. 2.15. Плоскость, параллельная горизонтальной плоскости проекций

Любая фигура, расположенная в такой плоскости, проецируется на фронтальную плоскость проекций без искажения, т. е. в натуральную величину.

Горизонтальный след фронтальной плоскости параллелен оси Х.

Примечание. Плоскость, параллельная одной из плоскостей проекций, является частным случаем проецирующих плоскостей.

Вопрос 35.

Поверхности вращения.

Поверхность вращения — поверхность, образуемая при вращении вокруг прямой (оси поверхности) произвольной линии (прямой, плоской или пространственной кривой). Например, если прямая пересекает ось вращения, то при её вращении получится коническая поверхность, если параллельна оси — цилиндрическая, если скрещивается с осью — однополостный гиперболоид вращения. Одна и та же поверхность может быть получена вращением самых разнообразных кривых.

Сфера (получается вращением окружности вокруг оси, лежащей в той же плоскости и проходящей через её центр).

Тор (получается вращением окружности вокруг не пересекающей её оси, лежащей в той же плоскости).

Эллипсоид вращения ― эллипсоид, длины двух полуосей которого совпадают. Может быть получен вращением эллипса вокруг одной из его осей.

Параболоид вращения ― эллиптический параболоид, полученный вращением параболы вокруг своей оси.

Конус получается вращением прямой вокруг другой прямой, пересекающей первую.

Круговая цилиндрическая поверхность

Катеноид

Вопрос 36.

В пространстве две плоскости могут быть параллельными, совпадающими и пересекающимися. Линия пересечения двух плоскостей – это прямая, для построения которой нужно определить две точки, общие для этих плоскостей. Постройте две непараллельные плоскости, которые в то же время не должны совпадать между собой, и назовите их a и b

2

Пусть плоскость b задана будет треугольником (АВС). Для решения данной задачи вам необходимо найти две точки, которые были бы одновременно общими для двух плоскостей, и провести через них прямую линию.

3

Плоскость b может быть представлена тремя прямыми линиями: АВ, ВС и АС. Точку пересечения прямой АВ с плоскостью a назовите точкой D.

4

Найдите точку пересечения плоскости a с прямой АС и назовите ее точкой F. Отрезок DF и будет представлять собой линию пресечения двух заданных плоскостей.

5

Частный случай пересекающихся плоскостей – взаимно перпендикулярные плоскости. Две пересекающиеся плоскости будут перпендикулярными в том случае, если третья плоскость (назовем ее g) будет перпендикулярна прямой пересечения заданных плоскостей (a и b). Другими словами, плоскость a будет перпендикулярна плоскости b, если плоскость g перпендикулярна прямой с (являющейся линией пересечения плоскостей a и b), при этом прямая а принадлежать будет плоскости a, а прямая b – плоскости b.

6

Первый признак перпендикулярности двух плоскостей: если плоскости b принадлежит прямая b, которая в свою очередь перпендикулярна плоскости a, то плоскости a и b перпендикулярны между собой.

7

Второй признак перпендикулярности рассматриваемых плоскостей: если плоскость a перпендикулярна плоскости bи к плоскости a подведен перпендикуляр, который имеет общую с плоскостью bточку, то данный перпендикуляр лежит в плоскости b. Прямая, проходящая между перпендикулярными плоскостями (в этом случае прямая с), и будет линией пересечения заданных плоскостей. Вопрос 37.

Как определяется параллельность линии заданной плоскостьи

Плоскости, перпендикулярные плоскостям проекций  (проецирующие плоскости)

1. Горизонтально-проецирующая плоскость α ┴ π1.

Плоскость α, перпендикулярная горизонтальной плоскости проекции π1, называется горизонтально проецирующей (рис. 2.13).

Основным свойством горизонтально-проецирующей плоскости является то, что любая фигура, расположенная в этой плоскости, проецируется на π1 в прямую линию (горизонтальный след плоскости h0α).

Угол b, который составляет горизонтальный след плоскости h0a c координатной осью Х, равен углу наклона плоскости a к плоскости проекций p2. Фронтальный след такой плоскости перпендикулярен оси Х (f0a ┴ X).

2. Фронтально-проецирующая плоскость β ┴ π2.

Плоскость b перпендикулярная фронтальной плоскости проекций π2 называется фронтально проецирующей (рис. 2.14).

а                                             б                                             в

г                                             д                                             е

ж

Рис. 2.12. Способы задания  плоскости:

а - тремя точками, не лежащими на одной прямой; б - прямой и точкой вне ее; в - двумя пересекающимися прямыми; г - двумя параллельными прямыми; д,е - плоской фигурой;  ж - следами плоскости

Рис. 2.13. Горизонтально-проецирующая плоскость

Рис. 2.14. Фронтально-проецирующая плоскость

Основным свойством фронтально-проецирующей плоскости является то, что любая фигура, расположенная в этой плоскости, проецируется на π2 в прямую линию (фронтальный след плоскости f0β). Угол a, который составляет фронтальный след плоскости f0β с координатной осью Х, равен углу наклона плоскости b к плоскости проекций π1. Горизонтальный след такой плоскости перпендикулярен оси Х.