
- •Лекция 1. Особенности атомно-кристаллического строения металлов.
- •1. Кристаллическое строение металлов
- •2. Полиморфные и магнитные превращения в металлах
- •Лекция 2. Строение реальных металлов. Дефекты кристаллического строения
- •Лекция 3. Кристаллизация металлов
- •Законы кристаллизации
- •Строение металлического слитка
- •Методы исследования металлов
- •Определение химического состава.
- •Изучение структуры.
- •Физические методы исследования
- •Лекция 4. Общая теория сплавов. Строение, кристаллизация и свойства сплавов. Диаграмма состояния. Строение металлических сплавов
- •Контрольная работа № 1 до этой темы Кристаллизация сплавов
- •Понятие о диаграммах состояния сплавов
- •Количественный структурно-фазовый анализ сплава
- •Лекция 5. Диаграммы состояния двухкомпонентных сплавов
- •5.1 Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии (сплавы твердые растворы с неограниченной растворимостью)
- •5.2 Диаграмма состояния сплавов с отсутствием растворимости компонентов в твердом состоянии (механические смеси)
- •5.3 Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •5.4 Диаграмма состояния сплавов, компоненты которых образуют химические соединения
- •5.5 Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (переменная растворимость)
- •Связь между свойствами сплавов и типом диаграммы состояния (закон Курнакова)
- •Железоуглеродистые сплавы
- •Компоненты и фазы в сплавах железа с углеродом
- •Диаграмма состояния железо-цементит
- •Сплавы системы железо-углерод и их структура
- •1) С содержанием углерода менее 0,02% (точка р)- техническое железо.
- •2) Содержащие 0,02…2,14 % углерода - углеродистые стали.
- •3) Сплавы, содержащие углерода более 2,14 % (до 6,67 %), заканчивающие кристаллизацию образованием эвтектики (ледебурита), называют чугунами.
- •Превращения, протекающие при охлаждении сплавов
- •Стали. Влияние углерода и примесей на свойства сталей
- •Назначение легирующих элементов.
- •Распределение легирующих элементов в стали.
- •Классификация и маркировка сталей Классификация сталей
- •По химическому: составу: углеродистые и легированные.
- •По содержанию углерода:
- •По способу выплавки:
- •По назначению:
- •Маркировка сталей
- •Качественные углеродистые стали
- •Качественные и высококачественные легированные стали
- •Легированные конструкционные стали
- •Легированные инструментальные стали
- •Быстрорежущие инструментальные стали
- •Шарикоподшипниковые стали
- •Автоматные стали
- •Строение, свойства, классификация и маркировка серых чугунов
- •Технология термической обработки стали
- •1. Отжиг
- •2. Нормализация
- •3. Закалка
- •Способы закалки
- •Дефекты закалки
- •4. Отпуск
- •5. Старение
- •6. Обработка холодом
Стали. Влияние углерода и примесей на свойства сталей
Углеродистые стали являются основными. Их свойства определяются количеством углерода и содержанием примесей, которые взаимодействуют с железом и углеродом.
Влияние углерода.
Влияние углерода на свойства сталей показано на рис. 10.1.
С ростом содержания углерода в структуре стали увеличивается количество цементита, при одновременном снижении доли феррита. Это приводит к уменьшению пластичности, к повышению прочности и твердости. Прочность повышается до содержания углерода около 1%, а затем она уменьшается, так как образуется грубая сетка цементита вторичного.
Углерод влияет на вязкие свойства. Увеличение содержания углерода повышает порог хладоломкости и снижает ударную вязкость.
Повышаются электросопротивление, снижаются магнитная проницаемость и плотность магнитной индукции.
Рис.10.1. Влияние
углерода на свойства сталей
Углерод оказывает влияние и на технологические свойства. Повышение содержания углерода ухудшает литейные свойства стали (для изготовления отливок используются стали с содержанием углерода до 0,4 %), обрабатываемость давлением и резанием, свариваемость. Следует учитывать, что стали с низким содержанием углерода также плохо обрабатываются резанием.
Влияние примесей.
В углеродистых сталях всегда присутствуют примеси, которые делятся на четыре группы.
1.Постоянные примеси: кремний, марганец, сера, фосфор.
Марганец и кремний вводятся в процессе выплавки стали для раскисления, они являются технологическими примесями.
Содержание марганца не превышает 0,5…0,8 %. Марганец повышает прочность, не снижая пластичности, и резко снижает красноломкость стали, вызванную влиянием серы. Он способствует уменьшению содержания сульфида железа FeS, так как образует с серой соединение сульфид марганца MnS. Частицы сульфида марганца располагаются в виде отдельных включений, которые деформируются и оказываются вытянутыми вдоль направления прокатки.
Содержание
кремния не превышает 0,35…0,5
%. Кремний,
дегазируя металл, повышает плотность
слитка. Кремний растворяется в феррите
и повышает прочность стали, особенно
повышается предел текучести,
.
Но наблюдается некоторое снижение
пластичности, что снижает способность
стали к вытяжке в холодном состоянии.
Содержание
фосфора в
стали 0,025…0,05
%. Фосфор,
растворяясь в феррите, искажает
кристаллическую решетку и увеличивает
предел прочности
и
предел текучести
,
но снижает пластичность и вязкость.
Располагаясь вблизи зерен, увеличивает температуру перехода в хрупкое состояние, вызывает хладоломкость, уменьшает работу распространения трещин. Повышение содержания фосфора на каждую 0,01 % повышает порог хладоломкости на 20…25oС.
Хладноломкость Ст3кп – 0оС, а у Ст3сп – «-40оС», поэтому применение кипящей стали для северных районов не допустимо.
Фосфор обладает склонностью к ликвации, поэтому в центре слитка отдельные участки имеют резко пониженную вязкость. Для некоторых сталей возможно увеличение содержания фосфора до 0,10…0,15 %, для улучшения обрабатываемости резанием.
Сера S – уменьшается пластичность, свариваемость и коррозионная стойкость. Р–искажает кристаллическую решетку.
Содержание серы в сталях составляет 0,025…0,06 %. Сера – вредная примесь, попадает в сталь из чугуна. Сера нерастворима в железе, она образует с ним химическое соединение – сульфид железа FeS, которое, в свою очередь, образует с железом легкоплавкую эвтектику (Fе + FеS) с температурой плавления 988oС. Поэтому при нагреве стальных заготовок для пластической деформации выше 900 °С эвтектика плавится, нарушаются связи между зернами, сталь становится хрупкой. При деформации в местах расположения эвтектики возникают надрывы и трещины, заготовка разрушается – явление красноломкости (повышение хрупкости при высоких температурах).
Для уменьшения вредного влияния серы добавляют марганец (соединение MnS имеет tпл=1620оС, пластично и не вызывает красноломкости).
Сера
снижает механические свойства, особенно
ударную вязкость а
и
пластичность (δ и ψ), а так же предел
выносливости. Она ухудшают свариваемость
и коррозионную стойкость.
2. Скрытые примеси - газы (азот, кислород, водород) – попадают в сталь при выплавке.
Азот и кислород находятся в стали в виде хрупких неметаллических включений: окислов (FeO, SiO2, Al2O3 ) нитридов (Fe 2N), в виде твердого раствора или в свободном состоянии, располагаясь в дефектах (раковинах, трещинах).
Примеси внедрения (азот N, кислород О) повышают порог хладоломкости и снижают сопротивление хрупкому разрушению. Неметаллические включения (окислы, нитриды), являясь концентраторами напряжений, могут значительно понизить предел выносливости и вязкость.
Очень вредным является растворенный в стали водород, который значительно охрупчивает сталь. Он приводит к образованию в катанных заготовках и поковках флокенов.
Флокены
– тонкие трещины овальной или округлой
формы, имеющие в изломе вид пятен –
хлопьев серебристого цвета. Металл с
флокенами нельзя использовать в
промышленности, при сварке образуются
холодные трещины в наплавленном и
основном металле. Если водород находится
в поверхностном слое, то он удаляется
в результате нагрева при 150…180
,
лучше в вакууме
мм
рт.ст. Для удаления скрытых примесей
используют вакуумирование.
3. Случайные примеси - случайно попадают в шихту вместе с металлоломом или чугуном при выплавке стали. Примесью может быть любой элемент (медь, алюминий, вольфрам, никель) . Содержание этих элементов ниже тех пределов, когда их вводят специально как легирующие добавки.
4. Специальные примеси – специально вводятся в сталь для изменения ее строения и получения заданных свойств. Примеси называются легирующими элементами, а стали - легированные сталями.
Сталь считают легированной хромом или никелем, если содержание этих элементов составляет 1 % или более.
При содержании ванадия, молибдена, титана, ниобия и других элементов более 0,1—0,5 % стали считают легированными этими элементами.
Сталь является легированной и в том случае, если в ней содержатся только элементы, характерные для углеродистой стали, марганец или кремний, но их количество должно превышать 1 %.
В конструкционных сталях легирование осуществляют с целью улучшения механических свойств — прочности, пластичности и т. д. Кроме того, при введении в сталь легирующих элементов меняются физические, химические и другие ее свойства.
Нужный комплекс свойств достигается не только легированием, но и рациональной термической обработкой, в результате которой получается необходимая структура.
Как правило, легирующие элементы существенно повышают стоимость стали, а некоторые из них к тому же являются дефицитными металлами, поэтому добавление их в сталь должно быть строго обосновано.