
- •6 Векторная диаграмма при разл нагрузках:
- •12. Режим нагрузки трансформатора
- •17.Паралл-я работа трансформатора при неравенстве коэф-ов трансформации. Режим холостого хода.
- •18.Параллельная работа тр-ов при неравенстве коэффициентов тр-ции. Режим нагрузки.
- •19. Параллельная работа тр-ов при неравенстве напряжений к.З.
- •21. Асинхронные машины. Конструкция, принцип действия.
- •22. Уравнение асинхронного двигателя при неподвижном роторе.
- •23. Уравнение ад при вращающемся роторе.
- •24. Схема замещения и векторная диаграмма в двигат.Режиме ам.
- •2 5. Режим генератора ам.
- •26. Режим электромагнитного тормоза ам. 1
- •27.Мощности и энергетическая диаграмма ам.
- •28.Зависимость элмаг момента от активной составляющей тока ротора.
- •29. Зависимость электромагнитного момента от скольжения асинхронной машины
- •30. Условие устойчивой работы дв-ля. Перегрузочная способность.
- •31. Пуск в ход ад
- •32. Регулирование скорости вращения асинхр машины
- •33. Ад с эффектом вытеснения тока ротора. Глубокопазные дв-ли
- •34. Ад с эффектом вытеснения тока ротора. Двухклеточныедв-ли
- •35. Синхронные машины
- •42. Рабочие хар-ки сг при автономной работе.
- •43. Характеристики синхронного генератора при хх и кз.
- •44. Отношение кз синхронного генератора
- •45. Внешняя характеристика синхронного генератора.
- •47. Диаграмма Потье
- •58. Синхронные двигатели. Преимущества и недостатки. Принцип действия.
- •59. Способы пуска синхронных двигателей.
- •60. Синхронные компенсаторы.
- •61. Машины постоянного тока. Способы возбуждения.
- •62. Реакция якоря машин постоянного тока.
- •63. Генератор постоянного тока независимого возбуждения. Характеристики.
- •64. Генератор постоянного тока параллельного возбуждения. Характеристики.
- •65. Генератор постоянного тока последовательного возбуждения. Характеристики.
- •66. Генератор постоянного тока смешанного возбуждения. Характеристики.
- •67. Двигатель постоянного тока параллельного возбуждения. Характеристики.
- •68. Двигатель постоянного тока с последовательным возбуждением. Характеристики.
- •69. Двигатель постоянного тока смешанного возбуждения. Характеристики.
- •70. Регулирование скорости вращения двигателя постоянного тока параллельного возбуждения.
- •7 1.Регулирование частоты вращения двигателей постоянного тока с последовательным возбуждением.
- •77. Самовозбуждение гпт
- •78. Начальный, номинальный и пусковой моменты ад.
- •79. Принцип обратимости мпт
- •81.Опытное определение параметров трансформатора.
1 Трансформаторы. Конструкция и принцип действия. Трансф.наз статич электромаг устройство, имеющее 2 или более индуктивно связанный обмотки и предназначенное для преобразования посредством явления электромагнитной индукции одной системы переменного тока. Т.е. вторичная сисема переменного тока может отличаться от первичной любыми параметрами: значениями напряжения и тока, числом фаз, частотой. Наибольшее применение в электричесих установок а также в энергетических системах передачи и распределения электроэнергии имеют силовые трансформаторы, посредством которых изменяют значения переменного напряжения и тока. При этом число фаз, форма кривой напряжения (тока) и частота остаются неизменными. Принцип действия: Простейший силовой трансформатор состоит из магнитопровода (сердечника), выполненного из ферромагнитного материала (обычно листовая электротехническая сталь), и двух обмоток, расположенных на стержнях магнитопровода (рис. 1.1, а). Одна из обмоток, которую называют первичной, присоединена к источнику переменного тока Г на напряжение U1. К другой обмотке,
Рис. 1.1. Электромагнитная (а) и принципиальная (б) схемы трансформатора
называемой вторичной, подключен потребитель Zн. Первичная и вторичная обмотки трансформатора не имеют электрической связи друг с другом, и мощность из одной обмотки в другую передается электромагнитным путем. Магнитопровод, на котором расположены эти обмотки, служит для усиления индуктивной связи между обмотками.. Действие трансформатора основано на явлении электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток i1, который создает в магнитопроводе переменный магнитный поток Ф. Замыкаясь в магнитопроводе, этот поток сцепляется с обеими обмотками (первичной и вторичной) и индуцирует в них ЭДС: в первичной обмотке ЭДС самоиндукции e1 = –w1(dФ/dt), во вторичной обмотке ЭДС взаимоиндукции е2 = –w2(dФ/dt), где w1 и w2 — число витков в первичной и вторичной обмотках трансформатора. Обмотку трансформатора, подключенную к сети с более высоким напряжением, называют обмоткой высшего напряжения (ВН); обмотку, присоединенную к сети меньшего напряжения, — обмоткой низшего напряжения (НН). Конструкция: Современный трансформатор состоит из : магнитопровода, обмоток, вводов, бака и др. Магнитопровод с насаженными на его стержни обмотками составляет активную часть трансформатора. Остальные элементы трансформатора называют неактивными (вспомогательными) частями. Рассмотрим подробнее конструкцию основных частей трансформатора.. Магнитопровод в трансформаторе выполняет две функции: во-первых, он составляет магнитную цепь, по которой замыкается основной магнитный поток трансформатора, а во-вторых, он предназначен для установки и крепления обмоток, отводов, переключателей. Магнитопровод имеет шихтованную конструкцию, т. е. он состоит из тонких (обычно толщиной 0,5 мм) стальных пластин, покрытых с двух сторон изолирующей пленкой (например, лаком). Такая конструкция магнитопровода обусловлена стремлением ослабить вихревые токи, наводимые в нем переменным магнитным потоком, а, следовательно, уменьшить величину потерь энергии в трансформаторе. Обмотки трансформаторов средней и большой мощности выполняют из обмоточных проводов круглого или прямоугольного сечения, изолированных хлопчатобумажной пряжей или кабельной бумагой. Основой обмотки в большинстве случаев является бумажно-бакелитовый цилиндр, на котором крепятся элементы (рейки, угловые шайбы и т. п.), обеспечивающие обмотке механическую и электрическую прочность.
2 Типы магнитпроводов: трансформаторы выполняются с магнитопроводами трех типов: стержневого, броневого и бронестержневого. В магнитопроводе стержневого типа имеются вертикальные стержни , на которых расположены обмотки , сверху и снизу замкнуты ярмами. На каждом стержне расположены обмотки соответствующей фазы и проходит магнитный поток этой фазы: в крайних стержнях — потоки ФА и Фс, а в среднем стержне — поток Фв. При этом стержни имеют ступенчатое сечение, вписываемое в круг диаметром . Для лучшей теплоотдачи иногда между отдельными пакетами стержня оставляют воздушные зазоры шириной 5—6 мм, служащие вентиляционными каналами.
. Однофазный трансформатор броневого типа: а- устройство; б- внешний вид. Магнитопровод броневого типа представляет собой разветвленную конструкцию со стержнем и ярмами, частично прикрывающими («бронирующими») обмотки (рис. 1.4). Магнитный поток в стержне магнитопровода броневого типа в два раза больше, чем в ярмах, каждое из которых имеет сечение, вдвое меньшее сечения стержня. В трансформаторах большой мощности применяют бронестержневую конструкцию магнитопровода (рис. 1.5), которая хотя и требует несколько повышенного расхода электротехнической стали, но позволяет уменьшить высоту магнитопровода (НБС < НС), а следовательно, и высоту трансформатора. Это имеет большое значение при транспортировке трансформаторов.
Рис. 1.5. Магнитопроводы бронестержневых трансформаторов: а — однофазного; б — трехфазного
4.Приведенный
трансформатор:
Для
удобства векторных диаграмм, а так же
для построения схемы замещения пользуются
приведенным трансформатором, у которого
число витков одной обмотки приведено
к числу витков другой обмотки, чаще
всего приводят вторичную обмотку в
первичной. Приводят таким образом, что
бы энергетические соотношения –
мощность, потери, косинус – в реальном
и приведенном тр-рах были равны. 1)
2)
3)
4)
,
тогда
.
5
Схема замещения тр-ов: В
реальном тр-ре связь между первичной
и вторичной обмотками осуществляется
через магнитный поток, что для исследования
неудобно, поэтому переходят к электрической
схеме замещения.
=>
Переходим к приведенному трансформатору
а
=>
- это схема Т-образная. (
фиктивное сопротивление пропорциональное
потерям в стали)
6 Векторная диаграмма при разл нагрузках:
RL: RC:
Ур-ния при RL нагрузке:
.
7. Опыт хх тран-ра: Опыт холостого хода — это определение реальных параметров элементов, используемых в расчётах схем замещения обычно активных двухполюсников, а именно при отсутствии внешней цепи можно определить величину ЭДС, так как из формулы закона Ома для полной цепи при сопротивлении внешнего участка стремящегося к бесконечности величина напряжения на клеммах реального элемента напряжение стремится к ЭДС, но следует учитывать соотношение внутреннего и внешнего сопротивлений: внешнее сопротивление должно быть намного больше внутреннего сопротивления источника, а на переменном токе следует учитывать реактивные составляющие сопротивления измерительного прибора. Целью этого опыта и является определение параметра ЭДС генератора для схемы замещения.
8 Опыт короткого замыкания тр-ра: Опыт коро́ткого замыка́ния — определение параметров элементов схемы замещения, используемой при расчете реальных схем, в частности, активных двухполюсников. В опыте короткого замыкания сопротивление внешней цепи полагают гораздо меньшим, чем внутреннее сопротивление источника. Исходя из закона Ома для полной цепи , при сопротивлении внешней цепи , сила тока достигает максимального значения. В случае переменного тока следует учитывать реактивные составляющие сопротивления измерительного прибора.Целью этого опыта и является определение параметра тока генератора для схемы замещения. Частный случай этого опыта проводится для трансформаторов переменного тока большой мощности, когда трансформатор вырождается из шестиполюсника в трехполюсник для трехфазного тока и из четырехполюсника в двухполюсник однофазного. Опыт короткого замыкания характеризует работу силового трансформатора в предельном режиме нагрузки при номинальном токе вторичной обмотки.
9. Система относительных единиц: Система относительных единиц- это способ расчета параметров в системах передачи электроэнергии, при котором значения системных величин (напряжений, токов, сопротивлений, мощностей и т.п.) выражаются как множители определенной базовой величины, принятой за единицу. Это упрощает вычисления, так как величины, выраженные в относительных единицах, не зависят от уровня напряжения. Так, для устройств (например, трансформаторов) одного типа, импеданс, падение напряжения и потери мощности при различных уровнях напряжения будут различаться по абсолютной величине, но выраженные относительно базовых величин, будут примерно одинаковы. После расчета полученные результаты могут быть переведены обратно в системные единицы (вольты, амперы, омы, ватты и т.п.), если известны базовые величины, принятые за основу. Относительные единицы используются обычно при расчетах передаваемой мощности; однако, поскольку параметры оборудования (трансформаторов, моторов и генераторов) часто указываются в относительных величинах, каждый электроинженер должен быть знаком с их концепцией. В системе относительных единиц используются единицы мощности, напряжения, силы тока, импеданса и адмиттанса. Только две из них являются независимыми; обычно в качестве независимых величин выбираются мощность и напряжение, что продиктовано природой реальных энергосистем. Все системные величины в сети выражаются как множители выбранных базовых значений.
10. Определение потерь трансформатора: Потери в трансформаторе разделяются на электрические и магнитные. Электрические потери. Обусловлены нагревом обмоток трансформаторов при прохождении по этим обмоткам электрического тока. Мощность электрических потерь РЭ пропорциональна квадрату тока и определяется суммой электрических потерь в первичной РЭ1 и во вторичной РЭ2 обмотках: Рэ = Рз1 + Рэ2 = mI12r1+ mI’22r’2, где т — число фаз трансформатора (для однофазного трансформатора т = 1, для трехфазного т = 3). При проектировании трансформатора величину электрических потерь определяют по (1.73), а для изготовленного трансформатора эти потери определяют опытным путем, измерив мощность к.з. при номинальных токах в обмотках Рк.ном-: Pэ=β2Pk.ном, где Р — коэффициент нагрузки. Электрические потери называют переменными, так как их величина зависит от нагрузки трансформатора. Магнитные потери. Происходят главным образом в магнитопроводе трансформатора. Причина этих потерь — систематическое перемагничивание магнитопровода переменным магнитным полем. Это перемагничивание вызывает в магнитопроводе два вида магнитных потерь: потери от гистерезиса РГ, связанные с затратой энергии на уничтожение остаточного магнетизма в ферромагнитном материале магнитопровода, и потери от вихревых токов РВТ, наводимых переменным магнитным полем в пластинах магнитопровода: PМ=PГ+PВ.Т С целью уменьшения магнитных потерь магнитопровод трансформатора выполняют из магнитно-мягкого ферромагнитного материала — тонколистовой электротехнической стали. При этом магнитопровод делают шихтованным в виде пакетов из тонких пластин (полос), изолированных с двух сторон тонкой пленкой лака. Магнитные потери от гистерезиса прямо пропорциональны частоте перемагничивания магнитопровода, т. е. частоте переменного тока (РГ = f), а магнитные потери от вихревых токов пропорциональны квадрату этой частоты (PВТ ≡ f2). Суммарные магнитные потери принято считать пропорциональными частоте тока степени 1,3, т. е. РМ = f1,3. Величина магнитных потерь зависит также и от магнитной индукции в стержнях и ярмах магнитопровода (Рм ≡ В2)
11. Треугольник к.з. трансформатора: Треугольник короткого замыкания позволяет при необходимости построить потенциальную диаграмму напряжений при нагрузке. Напряжение короткого замыкания трансформатора, представляющее полное падение напряжения в нем, измеряется у готового трансформатора при опыте короткого замыкания.
Опыт
короткого замыкания заключается в том,
что вторичную обмотку (обычно НН)
замыкают накоротко, а к первичной
обмотке через регулятор напряжения РН
подводят напряжение. Схема опыта
короткого замыкания изображена.
Напряжение поднимают от нуля до тех
пор, пока амперметр не покажет номинальное
значение тока I1.Так как вторичная
обмотка,ставляет собой замкнутый
контур, то в ней также возникнет локальный
ток I2(I1ω1= I2ω2). Ввиду отсутствия внешней
вторичной цепи мощность, которую
по-.ажет ваттметр, называется мощностью,
или потерями, короткого замыкания Рк,
которые состоят, как было сказано в §
5.2, из потерь в обмоточных проводах,
добавочных потерь и потерь в отводах.
Напряжение,
которое необходимо подвести к одной
из обмоток трансформатора, чтобы в ней
установился ток, соответствующий
номинальной мощности, при замкнутой
накоротко второй обмотке называется
напряжением короткого замыкания.
Это напряжение UK компенсирует активные и реактивные падения напряжения в обеих обмотках, вызванные токами I1 и I2, и поэтому является полным падением напряжения в трансформаторе. Напряжение короткого замыкания составляет несколько проценто