Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Магниторазведка.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.26 Mб
Скачать

4.3.5. Прямая и обратная задачи над вертикально намагниченным тонким пластом бесконечного простирания и глубины.

Пусть на глубине параллельно оси y расположен бесконечно длинный вертикальный пласт (с толщиной , меньшей глубины залегания), намагниченный вертикально (рис. 2.6). Определим для простоты лишь вдоль оси .

Рис. 2.6. Магнитное поле тонкого пласта бесконечного простирания

Поскольку нижняя часть пласта расположена глубоко, то влияние магнитного полюса глубоких частей пласта будет мало, и можно считать, что магнитные массы сосредоточены вдоль поверхности в виде линейных полюсов. Магнитная масса единицы длины пласта равна

Разобьем пласт на множество тонких "столбов". Тогда притяжение пласта будет складываться из притяжения всех элементарных столбов, а вертикальная составляющая его магнитного притяжения будет равна интегралу в пределах от до (по оси ) выражения для притяжения элементарного столба. Потенциал элементарного тонкого столба равен

,

а вертикальная составляющая ,

откуда равно

(2.13)

График будет иметь максимум над центром пласта и асимптотически стремиться к нулю при удалении от пласта. В плане над пластом будут вытянутые аномалии одного знака. Анализируя формулу (2.13), можно найти связи между глубиной залегания пласта ( ) и , т.е. абсциссой графика, где

Магнитная масса единицы длины равна . Заменив , получим . Зная и , можно рассчитать ширину пласта.

4.3.6. Прямая и обратная задачи для вертикально намагниченного горизонтального цилиндра бесконечного простирания.

Пусть на глубине параллельно оси y расположен бесконечно длинный цилиндр с магнитным моментом единицы длины, равным , где - интенсивность намагничивания, постоянная для всего цилиндра и направленная вертикально, - поперечное сечение цилиндра (рис. 2.7). Требуется определить напряженность поля вдоль оси . Поле такого цилиндра можно считать эквивалентным полю бесконечного числа вертикальных магнитных диполей, центры которых расположены по оси цилиндра.

Рис. 2.7. Магнитное поле горизонтального цилиндра бесконечного простирания

Потенциал в точке от элементарного диполя определяется согласно уравнению (2.5):

где

Потенциал всего цилиндра равен потенциалу от системы диполей, расположенных вдоль оси бесконечного цилиндра, или интегралу по объему цилиндра от выражения для потенциала элементарного диполя:

Так как , то и

(2.14)

Легко видеть, что при будет максимум а при При значения будут отрицательны, при - положительны.

В плане над горизонтальным цилиндром будут вытянутые аномалии двух знаков.

При решении обратной задачи глубину залегания цилиндра можно определить по формулам: , где и - абсциссы точек, в которых и . Зная , можно найти погонную массу цилиндра Заменив , получим . Зная и можно рассчитывать площадь сечения цилиндра.