Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matematika_teoria.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
967.43 Кб
Скачать

7.2. Математическая модель.

Ось ОХ направим вертикально вверх (рис. 1). На оси ОХ выделим элемент с координатами х и х + Δх. Тогда приращение энергии в направлений оси х за время Δt будет

(7.1)

С другой стороны, согласно закону сохранения энергий,

(7.2)

Левые части (7.1) и (7.2) равны, поэтому

где ρ– плотность грунта [кг/м3];

с – массовая теплоемкость грунта [кдж/кг.град];

λ – коэффициент теплопроводности грунта [вт/м·град.].

При х = 0 задается температура . На поверхности земли происходит конвективный теплообмен между поверхностью тела и окружающей средой (воздух).

В основу изучения конвективного теплообмена положен закон Ньютона-Рихмана

где q – плотность теплового потока, вт/м2;

θ0 – температура воздуха, 0С;

θгр – температура поверхности грунта,0С;

α – коэффициент теплоотдачи, вт/(м2·град);

Согласно закону сохранения энергии, количество теплоты, отдаваемый единицей поверхности тела окружающей среде за единицу времени вследствие теплоотдачи, должно быть равно теплоте, которая путем теплопроводности подводится к единице поверхности в единицу времени со стороны внутренних частей тела, т.е.

(7.3)

Равенство (7.3) является математической формулировкой граничного условия третьего рода; оно является действительной для каждого момента времени t.

называется граничным условием первого рода.

Получена задача: найти решение нестационарного параболического уравнения со смешанными граничными условиями, т.е.

(7.4)

θ(t,0) = θ1 = const (7.5)

(7.6)

(7.7)

Теорема 1. При определенных условиях на ρ(θ), с(θ) и λ(θ) задача (7.4) - (7.7) имеет единственное решение.

9. Стандартный метод Рунге-Кутта и его погрешность.

2. Метод Рунге – Кутта второго порядка точности.

Предположим, что приближенное значение решение исходной задачи в точке уже известно. Для нахождения поступим следующим образом. Сначала, используя схему Эйлера вычислим промежуточное значение , а затем воспользуемся разностным уравнением , из которого явным образом найдем искомое значение .

Погрешность метода. , где – константа, зависящая от исходных данных (3.1). Этот метод имеет второй порядок точности.

3. Метод Рунге – Кутта третьего порядка точности.

Считаем, что решение задачи (3.1) – (3.2) в точке уже известно. Тогда решение задачи (3.1) – (3.2) определяется по следующей схеме:

Погрешность метода.

, где – константа, не зависящая от к.

4. Метод Рунге – Кутта четвертого порядка точности.

Погрешность метода.

, где – константа, зависящая от начальных данных и не зависящая от к.

Замечание: Метод Рунге-Кутта также применяется, если неизвестная функция является вектором, т.е.

, где