- •Ю.Е. Калугин метрология, стандартизация и сетрификация Лекции (определения и тезисы)
- •Тема 1. Физические величины, методы и средства их измерений
- •§1.1. Физические величины и шкалы измерений
- •§1.2.Международная система единиц si
- •§1.3. Виды и методы измерений
- •§1.4. Общие сведения о средствах измерений (си)
- •Контрольные вопросы к теме
- •Тема 2. Электрические измерительные приборы
- •§2.1 Системы электрических измерительных приборов
- •§2.2. Действие механизмов некоторых систем
- •Достоинство электродинамической системы -высокая точность измерения. Недостатки электродинамической системы:
- •§2.3.Основные характеристики электрических измерительных приборов
- •2.3.1 Статическая характеристика
- •2.3.2. Вариация
- •2.3.3. Цена деления
- •2.3.4 . Предел измерения.
- •2.3.5 . Чувствительность.
- •§2.4. Измерение тока, напряжения и мощности
- •2.4.1. Измерение тока
- •2.4.2 Измерение напряжения.
- •2.4.3 Измерение мощности электрического тока.
- •Контрольные вопросы к теме
- •Тема 3. Погрешности измерений, обработка результатов, выбор средств измерений
- •§3.1. Погрешности измерений, их классификация
- •§3.2. Обработка результатов однократных измерений
- •Оцениваются по документации на прибор дополнительные систематические погрешности, обусловленные влияющими величинами и вычисляются по
- •§3.3. Обработка результатов многократных измерений
- •§3.4. Выбор средств измерений по точности
- •Контрольные вопросы к теме
- •Тема 4.Основы обеспечения единства измерений (оеи)
- •§4.1. Организационные основы оеи
- •§4.2. Научно-методические и правовые основы оеи».
- •§4.3. Технические основы оеи
- •Виды эталонов
- •§4.4. Государственный метрологический контроль и надзор
- •Контрольные вопросы к теме
- •Тема 5. Стандартизация
- •§5.1. Стандартизация в Российской Федерации
- •§5.2.Основные принципы и теоретическая база стандартизации
- •§5.3. Методы стандартизации
- •§5.4. Международная и межгосударственная стандартизация
- •Контрольные вопросы к теме
- •Тема 6. Сертификация
- •§6.1. Правовые основы сертификации
- •§6.2.Системы и схемы сертификации
- •Схемы сертификации продукции в России
- •§6.3. Этапы сертификации
- •§6.4. Органы по сертификации и их аккредитация
- •Контрольные вопросы к теме
- •Тема 7. Средства измерения формы сигнала, параметров сигнала, параметров цепи.
- •§7.1. Электрический сигнал и его формы
- •§7.2. Исследование формы сигналов и их параметров
- •7.2.1. Универсальные осциллографы
- •7.2.2. Виды разверток в универсальном осциллографе
- •7.2.3. Осциллографические методы измерения амплитуды и временных интервалов
- •Измерение частоты на основе сравнения – по фигурам Лиссажу
- •§7.3.Измерения частоты, интервалов времени, фазы
- •7.3.1. Метод измерения частоты.
- •§7.4. Измереное фазы, сдвига фаз
- •§7.4. Измерение параметров цепей
- •7.4.1. Мостовые методы измерения параметров двухполюсников
- •7.12. Схема четырехплечего измерительного моста
- •7.4.2. Косвенные методы измерения параметров
- •Контрольные вопросы к теме
- •Тема 8. Методы, средства и автоматизация измерений
- •§8.1. Принципы автоматизации измерений
- •§8.2.Методы и средства измерений неэлектрических величин
- •§8.3. Цифровые измерительные приборы (цип)
- •§8.4. Информационно-измерительные системы (иис) и информационно-вычислительные комплексы (ивк)
- •Контрольные вопросы
§7.2. Исследование формы сигналов и их параметров
Применение осциллографа для измерений
7.2.1. Универсальные осциллографы
Основным и наиболее широко применяемым прибором для исследования формы напряжения служит электронный осциллограф – прибор для визуального наблюдения электрических сигналов, а также измерения их параметров с использованием средства отображения формы сигналов. Обобщенная структурная схема универсального осциллографа представлена на рис. 7.6. В осциллографе можно выделить следующие функциональные блоки: канал вертикального отклонения (Y), канал горизонтального отклонения (X), канал управления яркостью (Z), средства измерения параметров сигналов (калибраторы), электронно-лучевую трубку (ЭЛТ).
Рис. 7.6. Структурная схема универсального осциллографа
7.2.2. Виды разверток в универсальном осциллографе
Одним из основных блоков осциллографа является ЭЛТ, выходные элементы которой - две пары пластин, отклоняющие луч горизонтально и вертикально. Если развертывающее напряжение приложено к одной паре отклоняющих пластин (обычно к пластинам X), то развертку называют по форме развертывающего напряжения (например, линейной или синусоидальной). Если развертывающие напряжения приложены к отклоняющим пластинам X и Y трубки одновременно, то название развертке дают по ее форме (например, круговая или эллиптическая).
Наиболее широко используется линейная развертка, создаваемая пилообразным напряжением Up генератора развертки. В зависимости от режима работы генератора развертки различают автоколебательную, ждущую и однократную развертки.
7.2.3. Осциллографические методы измерения амплитуды и временных интервалов
В универсальных осциллографах амплитуду сигналов измеряют с помощью масштабной сетки, помещенной на экране ЭЛТ. Цену деления сетки устанавливают с помощью калибраторов. Метод измерения параметров периодического сигнала показан на рис. 11.1. Параметры импульсов определяются следующим образом: размах (амплитуда импульса) Up= Су1У ; |Су| — цена деления сетки по вертикали, В/дел; Т= СХLХ — период следования импульсов; τи = СХ lХ — длительность импульса; |СХ|— цена деления сетки по горизонтали, mс/дел; ly> Lx, lx — выражены в делениях сетки.
T
Up
Рис. 7.7. Определение параметров сигнала с помощью масштабной сетки
Погрешность измерения амплитуды сигнала составляет 3...5 %.
з7.2.4. Осциллографические методы измерения частоты
Измерение частоты на основе сравнения – по фигурам Лиссажу
Способ измерения частоты по интерференционным фигурам, называемым фигурами Лиссажу, основан на сравнении неизвестной частоты fизм с известной частотой fобр, воспроизводимой мерой. С этой целью напряжение неизвестной частоты подаётся на вход вертикального (Y) или горизонтального (Х) отклонения, а напряжение образцовой частоты соответственно на вход горизонтального или вертикального отклонения. Генератор развертки осциллографа выключается. Частоту образцового генератора fобр подстраивают так, чтобы на экране осциллографа наблюдалась простейшая устойчивая фигура. Форма фигур Лиссажу зависит от отношения частот и начальных фаз сравниваемых колебаний. Полученную фигуру нужно мысленно пересечь вертикальной и горизонтальной линиями (не проходящими через узлы) и сосчитать число пересечений ими ветвей фигуры по вертикали nв и по горизонтали nг.
Значение измеряемой частоты определяется из соотношения fу nв = fх nг.
Точность этого метода определения частоты колебания оказывается высокой и определяется стабильностью образцового генератора, однако получение и наблюдение таких фигур – достаточно сложная измерительная задача.
