
- •Методы и режимы сушки объектов перед испытаниями на герметичность.
- •Методы сушки объектов.
- •Методы контроля герметичности. Метод испытания керосином.
- •Химический метод.
- •Пузырьковые методы.
- •Акустический метод.
- •Газоаналитические методы испытания. Классификация методов испытания.
- •Катарометрический метод.
- •Галогенный метод.
- •Принцип действия течеискателя.
- •Галогенные течеисктели.
- •Способ щупа.
- •Способ вакуумного датчика.
- •Электронозахватные течеискатели.
- •Плазменный течеискатель.
- •Масс-спектрометрический метод.
Галогенный метод.
Галогенный метод контроля ранее назывался галоидным. Применяется в различных областях промышленности. Его использование особенно эффективно при оценке герметичности, объемов большого размера или систем сильно разветвленными трубопроводами не больших сечений. Часто галогенный метод определяют для определения мест повреждения газопроводов или газонаполненных камер. Вакуумные галогенные испытания выполняют при контроле низко и высоковакуумных системах. В качестве пробных газов применяют газообразные фреоны, поскольку они не ядовиты и сравнительно дешевы. Давление которое можно создать в объекте контроля ограничено упругостью паров галогеносодержащего газа при температуры испытаний (например, для фреона 12 при нормальной температуре парциальное давление составляет около 0.6МПа) поэтому при давлениях 0.6-0.93МПа следует применять фреон 22, а при давлениях 0.83-3.24МПа фреон 13. Иногда применяют другие галогеносодержащие вещества: дихлорэтан, четырех хлористый углерод, хлористый метил. При давлениях в объекте превышающих 0.6МПа обычно используют смесь фреона с воздухом.
Принцип действия течеискателя.
Принцип действия галогенных течеискателей основан на использовании свойств накаленной платины имитировать положительные ионы и таким образом резко увеличивать ионную эмиссию в присутствии галогеносодержащего вещества. Появление ионного тока при галогенном обусловлено образованием щелочных металлов образующихся в результате ионизации на поверхности платинового эммитора, попадающих на эту поверхность в результате испарения из нагретого керамического блока эмиссии. С увеличением толщины слоя ионов на поверхности эммиторов эмиссия ионов практически прекращается. Поступающие поверхности эммитора галогеносодержащие вещества вступают в химическое взаимодействие с ионами щелочных металлов, в результате поверхность эммитора в большей или меньшей степени освобождается от отсорбированных ионов, что приводит к возрастанию силы ионного тока. При прекращении поступления галогенов поверхность эммитора вновь покрывается слоем ионов щелочных металлов, а сила ионного тока уменьшается до фонового значения. Концентрация галогенов в воздухе регистрируемых при испытаниях мала.
Галогенные течеисктели.
Основные характеристики галогенных течеискателей
Параметр |
ГТИ-6 |
БГТИ6 |
ТИ2-8 |
Чувствительность, мм3МПа/с (с выносным щупом) |
1.3х10-4 |
9х10-4 |
1.3х10-4 |
С вакуумным датчиком |
1.3х10-6 |
- |
1.3х10-6 |
Индикация течи |
Стерлочная, звуковая, световая |
Стерлочная, звуковая |
Звуковая, световая |
Потребляемая мощность, ВА |
85 |
35 |
65 |
Питания |
220В |
Батарея аккумуляторов |
Переменный ток 220В |
Габаритные размеры измерительного блока, мм |
360х160х200 |
188х326х348 |
200х180х260 |
Масса, кг измерительного блока |
10 |
2.5 |
6.5 |
Выносного щупа |
1.3 |
0.7 |
1.3 |
Вакуумного датчика |
1.2 |
- |
1.2 |
Течеискатель ГТИ-6 оснащен выносным (атмосферным) щупом и вакуумным датчиком которые подсоединены к измерительному блоку с помощью кабелей. При вакуумных испытаниях пробный газ подают к контролируемому объекту с помощью обдувателя. При работе в атмосферных условиях при отсутствии кислорода воздуха обеспечивает работу чувствительного элемента течеискателя без каких либо дополнительных устройств. При работе в вакууме поступление кислорода обеспечивается специальным устройством в вакуумном датчике. Чувствительный элемент датчика представляет собой реагирующий на парциальное давление пробного газа систему состоящего из двух платиновых электродов, коллектор и эммитора. Коллектор ионов выполнен в виде трубки из платиновой фольги, которая закреплена в цилиндрической втулке из коррозионостойкой стали. Эмитор представляет собой керамический каркас со спиралью из платиновой проволоки вставленный коаксиально внутри коллектора и закрепленной на керамическом основании. Должен быть нагрет до 800-900С. Выносной щуп(фотка) расположен в пластмассовом корпусе, в передней части находится чувствительный элемент защищенный металлическим кожухом, экраном со съемным радиатором для теплоотвода Коллектор датчика закреплен на втулке. Элемент газовой смеси пробного газа осуществляется вентилятором приводимого во вращение электродвигателем. Засасываемая смесь проходит через чувствительный элемент и выбрасывается наружу через специальное отверстие в корпусе щупа. В хвостовой чаще щупа расположен армотизатор и ионовой сигнальной лампой закрытой прозрачным колпачком. На рукоятке закреплен токоотводящий провод, соединяющий щуп с измерительным. При работе щуп может располагаться на расстоянии до 8м от измерительного блока течеискателя. Обдуватель выполнен в виде полой стенки и заканчивается с одной стороны штуцером для подсоединения резинового шланга, а с другой стороны выходным соплом. Вакуумный датчик представляет собой корпус фланец на котором смонтированы эмитор, коллектор, кислородный инжектор. Эмитор закреплен на керамическом каркасе, а датчик закреплен на фланце с помощью трех стоек. Кислородный инжектор предназначен для подачи кислорода к чувствительному элементу датчика. Инжектор представляет собой стакан заполненный порошком перманганата калия, который при высокой температуре разлагается с выделением большого количества кислорода, который через специальное отверстие в стакане поступает в чувствительный элемент датчика. Течеискатель оснащен калиброванной течеголовой со сменными насадками обеспечивающие получение стабильных потоков паров галогеносодержащего вещества гекса-хлор-этана различной величины. Калиброванную течь используют при регулировки течеискателя на заданную чувствительность при атмосферных испытаниях. Калиброванная течь представляет собой металлический цилиндр. Во внутрь цилиндра засыпают порошок гекса-хлор-этана специальном направляющие обеспечивают постоянство расположения щупа течеискателя относительно калиброванной течи при градуированной шкалы измерительного прибора. Поток газа регулируют с медными насадками. Испытания галогенными течеискателями можно проводить фреоном или его смеси с воздухом, способом щупа или вакуумного датчика.