Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Миовисцерофасциальные связи.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
3.59 Mб
Скачать

Фото 14. Гаряев Пётр Петрович (родился в 1942 г.). Кандидат биологических наук, академик Российской академии ме-дико-технических наук, академик раен. Автор теории «волнового генома».

Впоследствии П.П. Гаряевым, А.А. Березиным (Отдел теоретических проблем РАН) и А.А. Васильевым (Физический институт РАН) было высказано предположение, что излучаемые хромосомами электромагнитные волны свето-звукового диапазона являются источником эпигенетической информации.

В основу идей Гаряева - Березина - Васильева («ГБВ-модель») заложены принципы когерентных физических излучений, голографии, солитоники и фрактальности. Их суть состоит в том, что геном высших организмов рассматривается как солитонный биоголографический компьютер, формирующий пространственно-временную структуру биосистем (например, развивающихся эмбрионов) по волновому образу-предшественнику.

Многолетнее изучение генома человека, проводимое по международной программе с участием сотен учёных, показало, что все 32 тысячи человеческих генов, участвующих в непосредственной кодировке белков, составляют всего 1-5% от общей длины ДНК в хромосомах. Именно они и выполняют функции по реплицированию РНК и белков. Остальные участки ДНК, составляющие её большую часть, были названы обескураженными генетиками «бессмысленными», «некодирующими», «эгоистическими» или «мусорными» («junk» - барахло, мусор) ДНК.

У бактерий «бессмысленных» участков вообще нет, у дрожжей они также почти отсутствуют. По мере повышения уровня организации живого организма накапливается все больше некодирующей ДНК.

Есть мнение, что «мусорная» часть ДНК является кладбищем генетического материала вирусов, локализованного и инактивированного клеткой. Предполагают также, что «эгоистические» участки могут оказаться резервуаром эволюции или складом «запчастей». Возможно, клетка использует фрагменты некодирующей ДНК для ремонта поврежденного участка двойной спирали.

С точки зрения авторов ГБВ-модели «мусорная» часть ДНК представляет собой главную «интеллектуальную» структуру всех клеток. Её жидкокристаллический континуум является нелинейно-оптической средой, способной в определенных условиях функционировать как лазер с перестраиваемыми длинами волн, а также как лазер на солитонах («фрёлиховских модах»).

Работая над теорией волнового генома, исследователи группы П.П. Гаряева показали, что для описания живого человека в гене должно содержаться, как минимум 1025 Бит информации, в то время как ДНК способна хранить максимум 115 Бит. Что же является дополнительным источником наследственной памяти?

В качестве таких информационных накопителей могут выступать инфраструктуры внеклеточных матриксов, цитомембраны, цитоскелета и ядра клетки, содержащие фоточувствительные белки типа порфиринов или родопсина. Другим важнейшим бионосителем информации является желатин - производное коллагена, а также другие коллагеновые гели. Кроме того, генераторами и акцепторами информационных волн внутри биообъектов являются различные жидкокристаллические структуры, способные образовывать фракталы, например, внутриклеточная вода.

Все эти субстраты формируют в живом организме подобие дифракционных решеток. При попадании на них лазерного излучения, генерируемого хромосомой, в акустических, инфракрасных, ультрафиолетовых и других диапазонах формируется объёмная голограмма [56].

Ещё во время первых экспериментов с газоразрядной визуализацией С. Кирлиан (см. раздел 1.2.) решил проверить, как на снимках будет выглядеть свежий срез листа какого-нибудь дерева. На удивление исследователя вместо листа с отрезанной частью на фотопластинке проявлялся абсолютно целый лист. Этот эффект сохранялся в течение многих часов. Только на следующие сутки отрезанная часть стала исчезать с негатива.

В 1970-х годах опыты по фотографированию листа в высоковольтном высокочастотном поле со строго определенными параметрами были повторены во многих лабораториях мира. «Фантомный листовой эффект» в виде светящегося изображения целого листа, даже если у него отсутствует некоторая часть, регистрировался примерно в 10 - 15% наблюдений.

Данный факт, возможно, является иллюстрацией к тому, как хромосомы, генерирующие лазерное излучение в широком диапазоне, создают трёхмерный голографический фантом, который является своеобразным сборочным чертежом «строящегося объекта». В дальнейшем эта матрица наполняется конкретным содержанием - белками, синтезируемыми при помощи обычного генетического кодирования.

Вместе с тем, каждый живой организм посредством эндогенных излучений непрерывно передает в пространство информацию о строении, функциях и состоянии составляющих его структур. При патологии над «больной» частью тела конфигурация поля изменяется, что обусловлено метаболической активизацией или, наоборот, вялостью энергетических процессов в данной области.

Важно понять, что нет непреодолимой границы между генами и другими клеточно-внеклеточными биополимерами, являющимися супергенами, тем самым подчёркивается принципиальная нелокальность генома. Более того, гены могут быть составной частью голографических решеток супергенов и регулировать их полевую активность.

По мнению П.П. Гаряеева и его соавторов, кодировка и считывание информации в генах и супергенах осуществляется по принципу фрактальной инвариантности.

Первым (нуклеотидным) уровнем этой сложной иерархии является «канонический» генетический код, состоящий из 4 букв (аденин, гуанин, цитозин, тимин) – по числу нуклеотидов, что позволяет составить 64 трёхбуквенных слова – по числу возможных комбинаций нуклеатидных триплетов. Этого с избытком хватает для кодирования всех 20 аминокислот.

Второй (аминокислотный) уровень располагает уже 20-буквенной азбукой (по числу аминокислот), что позволяет программировать синтез огромного разнообразия белков.

Следующей ступенью этой иерархии может быть последовательность белковых доменов и т.д.

Таким образом, генетический язык обладает потенциально неисчерпаемым запасом «слов». Кроме того, то, что было в одном масштабе рассмотрения «фразой» или «предложением», в другом – превращается в «слово» или «букву».

Однако на этом многомерность эпигенетического языка не исчерпывается, во многом он сходен с человеческой речью. Действительно, с помощью алфавита можно составить множество слов, но отдельными бессвязными словами невозможно описать ни одно мало-мальски сложное явление. Для построения фраз и предложений требуются законы мышления, грамматики и логики.

Нужно отметить, что со своей стороны классики структурной лингвистики [277, 135] уже давно пришли к выводу, что по фрактальной организации (соотношение фонем, принцип построения фраз и т.д.) все человеческие языки идентичны и, по-видимому, генетически детерминанты.

В отличие от ограниченного триплетного генетического кода, теория квазивербального кодирования способна объяснить, как в геноме зашифрована пространственно-временная структура организма. Это означает, что отдельные клетки могут общаться между собой на волновом «языке», имеющем определенное сходство с образными построениями человеческой речи.

Нельзя не заметить, что смелые и неформальные идеи П.П. Гаряева порой отдают откровенным авантюризмом, хотя в них нет ничего такого, чего не могло бы быть в принципе. Академическая наука теории волнового генома не признаёт, поскольку до сих пор ни одного убедительного экспериментального доказательства её правомочности не представлено [50].

Таким образом, в настоящее время в медико-биологических науках постепенно формируется базис для интеллектуального прорыва в понимании природы ряда необычных биоинформационных и психофизических явлений, необъяснимых в рамках прежних классических представлений. Эти подходы, прежде всего, берутся на вооружение адептами комплементарной (альтернативной) медицины.

Представленные факты и положения в какой-то степени способны пролить свет на материальные субстраты и способ функционирования канально-меридианальной системы человека, а также её роль в обеспечении висцеро-соматических связей в соответствии с принципом подобия.

Тем не менее, не следует оставлять попытки изучения межорганных и органно-тканевых взаимодействий на нейрофизиологическом и нейроэндокринных уровнях регуляции.