
- •«Системы защиты среды обитания»
- •Классификация и основы применения экобиозащитной техники.
- •Загрязнение окружающей среды. Нежелательные последствия загрязнения окружающей среды. Понятие об эффекте суммации. Триггерность. Синергизм. Устойчивость. Ксенность.
- •Классификация загрязнений окружающей среды. Опасные и вредные факторы среды обитания. Виды экологических нормативов.
- •Стратегия и тактика защиты окружающей среды. Безотходное и малоотходное производство.
- •Основные источники и характеристики загрязнений атмосферы. Загрязнения от природных процессов. Загрязнения антропогенного происхождения.
- •Нормирование атмосферных загрязнений. Классификация источников выделений и выбросов вредных веществ в атмосферу.
- •Стратегия и тактика защиты атмосферы.
- •Классификация пылеулавливающих аппаратов. Очистка газов от взвешенных частиц.
- •Классификация пыли по дисперсности. Характеристика пыли (плотность, кажущаяся и истинная, слипаемость, смачиваемость).
- •Оценка эффективности работы газоочистного аппарата.
- •Движение частиц пыли в неподвижной среде. Движение частиц пыли в прямолинейном потоке газа.
- •Движение частиц пыли в прямолинейном потоке газа
- •Сухие механические газоочистные аппараты (пылеуловители).
- •Пылеосадительные камеры.
- •Инерционные пылеуловители. Радиальные пылеуловители (пылевые мешки).
- •Жалюзийные пылеуловители.
- •Циклоны. Определение гидравлического сопротивления и размера циклона.
- •Батарейные циклоны (мультициклоны).
- •18. Фильтры
- •19. Электрофильтры
- •20. Вихревые пылеуловители (вихревой пылеуловитель впу и вихревой пылеуловитель со встречными закрученными потоками вэп). Вихревой пылеуловитель «Вихрь»
- •21. Ротационные пылеуловители. Вентиляторные пылеуловители
- •22. Мокрая очистка газов. Аппараты для мокрой очистки газов. Достоинства и недостатки
- •23. Пылеулавливающие аппараты с промывкой газа жидкостью
- •24. Форсуночные скрубберы. Устройство и работа
- •25. Процессы тепло- и массообмена в скруббере
- •26. Скрубберы Вентури. Устройство и работа
- •27. Жидкопленочные пылеулавливающие аппараты
- •28. Барботажные пылеуловители. Пылеуловитель пвм
- •29. Пенные пылеулавливающие аппараты
- •30. Обеспыливание воздуха в промышленности
- •31. Сравнение типов различных пылеуловителей
- •32. Абсорбционное оборудование. Выбор абсорбера для очистки газов
- •33. Классификация абсорберов
- •34. Распыливающие (безнасадочные) аппараты. Достоинства и недостатки распыливающих аппаратов
- •Насадочные абсорберы: принцип работы насадочных абсорберов. Перераспределение жидкости между слоями.
- •Насадочные абсорберы. Гидродинамические режимы в насадочных абсорберах. Выбор насадки.
- •Выбор насадки
- •Аппараты физико-химической очистки газа. Абсорбция. Десорбция. Хемосорбция. Физико-химическая сущность процессов.
- •Факторы, воздействующие на скорость абсорбции.
- •Абсорбенты, применяемые для очистки газов.
- •Требования, предъявляемые к абсорбентам.
- •Пленочные абсорберы.
- •Тарельчатые абсорберы. Тарельчатые колонны со сливными устройствами.
- •Гидродинамические режимы работы тарелок.
- •Колонны с тарелками без сливных устройств. Типы провальных тарелок и гидродинамическое режимы работы провальных тарелок.
- •Адсорбционная очистка газа. Адсорбция. Физико-химическая сущность процесса.
- •Характеристика адсорбентов и их виды.
- •Десорбция.
- •Устройство адсорберов адсорбционных установок. Адсорберы с неподвижным слоем поглотителя.
- •Устройство адсорберов адсорбционных установок. Адсорберы с движущимся зернистым адсорбентом.
- •Устройство адсорберов адсорбционных установок. Адсорберы с кипящим (пседоожиженным) слоем адсорбента.
- •Системы очистки от основных паро- и газообразных выбросов. Туманоуловители.
- •Стратегия и тактика защиты гидросферы.
- •Виды и классификация загрязнителей. Классификация сточных вод.
- •Задачи и направления защиты гидросферы.
- •Процессы и аппараты для механической очистки сточных вод. Усреднители.
- •Процессы и аппараты для механической очистки сточных вод. Решетки.
- •58. Сооружения и аппараты для осаждения примесей из сточных вод. Песколовки (горизонтальные, тангенциальные, аэрируемые).
- •59. Сооружения и аппараты для осаждения примесей из сточных вод. Отстойники (горизонтальные, радиальные, вертикальные, тонкослойные, двухъярусные отстойники, отстойники-осветлители).
- •60. Очистка от всплывающих примесей. Нефтеловушки (горизонтальные, многоярусные (тонкослойные), радиальные).
- •61. Гидроциклоны. Напорные и открытые. Факторы, влияющие на эффективность очистки в гидроциклонах.
- •62. Очистка от всплывающих примесей. Фильтрационные установки.
- •63. Очистка от всплывающих примесей. Сетчатые фильтры.
- •65. Очистка от всплывающих примесей. Напорные фильтры.
- •66. Очистка от всплывающих примесей. Многослойные фильтры.
- •67. Очистка от всплывающих примесей. Фильтры «Полимер».
- •68. Введение в мембранные процессы. Определение мембраны.
- •69. Мембранные процессы. Микрофильтрация.
- •70. Способы обеззараживания воды.
- •71 Ультрафильтрация. Обратный осмос. Пьезодиализ. Диализ. Осмос. Электродиализ.
- •72. Проблемы акустического загрязнения окружающей среды
- •73. Источники шума и вибраций в жилых и общественных зданиях. Распространение шума.
- •75. Принципы и методы защиты от шума жилых зданий, территорий застройки. Шумозащитные земные насаждения.
- •Защита от радиоактивного загрязнения биосферы. Методы и системы защиты.
- •Флотация. Флотационные установки.
- •78.Установка электрохимической очистки сточных вод. Электрофильтры.
- •Электрофлотационные установки
- •Установки электрокоагуляции.
- •81.Биологическая очистка сточных вод. Поля фильтрации и орошения. Описание процесса биологической очистки
- •Электроизвлечение металлов. Конструкции электродов.
- •83. Аэробное сбраживание. Аэротенки
- •84. Анаэробное сбраживание. Метантенки.
- •85. Биофильтры.
- •86. Активный ил. Возраст ила. Вспухание.
- •87Методы обработки осадков сточных вод.Основные процессы, применяемые для обработки осадков производственных сточных вод.
- •88Уплотнение осадков. Флотационное уплотнение осадков.
- •89Анаэробное (метановое) сбраживание осадков.
- •Аэробная стабилизация осадков.
- •Кондиционирование осадков.Реагентная и тепловая обработка.
- •Жидкофазное окисление (метод Циммермана) осадков и отходов.Схема установки жидкофазного окисления.
- •Замораживание и оттаивание.
- •Обезвоживание осадков. Сушка осадков на иловых площадках. Фильтрование.Ленточный вакуум-фильтр.
- •Обезвоживание осадков. Фильтрование. Барабанный вакуум-фильтр.
- •Обезвоживание осадков. Фильтрование. Фильтр – пресс фпакм.
- •Т ермическая сушка осадков.
- •98. Метод гетерогенного катализа для обезвреживания отходов.Схемы термокаталитических реакторов.
- •99. Пиролиз отходов. Схема реактора для сухого пиролиза.
- •100. Плазменный метод. Схема плазменного аппарата.
- •101. Огневой метод ликвидации отходов.
- •102. Аппараты огневого обезвреживания и переработки отходов. Слоевые топки.
- •103. Барабанные вращающиеся печи.
- •104. Многоподовые печи для сжигания осадков
- •105. Камерные печи.
- •106. Реакторы с псевдоожиженным слоем для сжигания осадков.
- •107. Радиационные отходы. Их классификация.
- •108. Захоронение радиоактивных отходов в подземных хранилищах и могильнках.
- •109. Сооружение хранилищ радиоактивных отходов.
- •110. Переработка и утилизация твердых бытовых отходов. Норма накопления. Морфологический, фракционный и химический состав тбо.
- •112. Компостирование и брикетирование твердых бытовых отходов.
- •113. Мусоросжигание. Рисайклинг.
- •114. Захоронение тбо. Свалки. Полигоны.
- •115. Основные требования при проектировании полигона.
Оценка эффективности работы газоочистного аппарата.
Ч
аще
всего эффективность пылеулавливающего
аппарата любого типа (к.п.д. аппарата)
определяется следующей зависимостью:
где V1 и V2 – объем газа на входе в газоочистительный аппарат и выходе из него (при нормальных условиях), м3;
х1 и х2 - концентрация пыли (тумана) в запыленном и очищенном газе (при нормальных условиях), г/м3.
Э
ффективность
очистки для частиц пыли различных
размеров неодинакова. В большинстве
случаев лучше улавливается более крупная
пыль и кривая парциальных коэффициентов
очистки, построенная для условий, при
которых проводилось испытание, имеет
вид, показанный на рис. 1. Под фракционным
коэффициентом очистки i
понимают массовую долю данной фракции,
осаждаемую в пылеулавливающем аппарате.
Зная фракционный состав пыли и фракционные коэффициенты очистки пылеулавливающего аппарата (приведенные к условиям его работы), можно определить общий коэффициент очистки аппарата из выражения
Коэффициент очистки в значительной степени зависит от свойств пыли и параметров газового потока.
Для оценки эффективности процесса очистки также используют коэффициент проскока (Кпр) частиц через пылеуловитель
Кпр = 1 -
(3)
При последовательном соединении нескольких пылеулавливающих аппаратов коэффициенты проскока через первый, второй и третий аппараты будут соответственно равны:
Следовательно, общий коэффициент очистки трех последовательно включенных аппаратов будет равен:
В этом случае следует учитывать изменение фракционного состава пыли при переходе от аппарата к аппарату, что можно сделать по формуле
г
де
Ф1вх и Ф1вых –
содержание данной фракции на входе в
первый аппарат и на выходе из него, %;
фр- фракционный коэффициент очистки данной фракции в первом аппарате;
1 - общий коэффициент очистки первого аппарата.
Остаточную запыленность газа легко найти по начальной запыленности и коэффициенту проскока:
Зная Х2, можно подсчитать количество пыли, выбрасываемой в атмосферу, которое является исходной величиной для расчета приземных концентраций пыли.
Движение частиц пыли в неподвижной среде. Движение частиц пыли в прямолинейном потоке газа.
С
момента начала движения частицы в вязкой
среде возникает сила сопротивления
этому движению Р, которая согласно
широко известному закону Ньютона,
выражается следующим образом:
Этот закон применим и в том случае, если частица неподвижна, а поток газа обтекает ее со скоростью w.
П
ри
движении частицы в неподвижной среде
или обтекании неподвижной частицы
потоком газа возможны ламинарный и
турбулентный режимы движения. Основной
характеристикой режима движения является
в этом случае число Рейнольдса,
определяемое, однако, не по диаметру
газопровода, а по размеру движущейся
частицы d и относительной
скорости w, которое
можно найти из известного выражения:
Численное значение Re позволяет установить не только режим движения, но и численное значение аэродинамического коэффициента С (по эмпирическим зависимостям, проверенным практикой). Так, для областей с ламинарным режимом, турбулентным режимом и промежуточной характерны значения Re, соответственно £ 2; > 500 и < 500 и значения С, соответственно равные 24/Re; 18,5/Re0,6.
При ламинарном режиме для частиц сферической формы после подстановки в уравнение (8) F = p2/4 и развернутого значения величины аэродинамического коэффициента получим
Э
той
формулой выражается закон Стокса,
справедливый для ламинарного режима
движения частицы сферической формы в
однородной, не ограниченной стенками
вязкой среде.
В наиболее простом случае, когда частица движется вниз под действием силы тяжести с возрастающей скоростью, вследствие возрастания силы сопротивления быстро наступает момент, когда обе эти силы приходят в равновесие. С этого момента частица начинает двигаться вниз по инерции с постоянной скоростью wв, которую легко определить из уравнения равновесия
Здесь rп и rr - плотность частицы пыли и окружающей среды; wв - скорость витания.
Очевидно, что wв можно рассматривать и как скорость направленного вверх вертикального потока газа, при которой данная частица будет удерживаться в занимаемом ею положении. Из сказанного следует, что вес частицы G в пределах применимости закона Стокса может быть выражен через скорость витания следующим образом:
(14)
Решая уравнение (13) относительно диаметра частицы, получим, что
(15)