
- •«Системы защиты среды обитания»
- •Классификация и основы применения экобиозащитной техники.
- •Загрязнение окружающей среды. Нежелательные последствия загрязнения окружающей среды. Понятие об эффекте суммации. Триггерность. Синергизм. Устойчивость. Ксенность.
- •Классификация загрязнений окружающей среды. Опасные и вредные факторы среды обитания. Виды экологических нормативов.
- •Стратегия и тактика защиты окружающей среды. Безотходное и малоотходное производство.
- •Основные источники и характеристики загрязнений атмосферы. Загрязнения от природных процессов. Загрязнения антропогенного происхождения.
- •Нормирование атмосферных загрязнений. Классификация источников выделений и выбросов вредных веществ в атмосферу.
- •Стратегия и тактика защиты атмосферы.
- •Классификация пылеулавливающих аппаратов. Очистка газов от взвешенных частиц.
- •Классификация пыли по дисперсности. Характеристика пыли (плотность, кажущаяся и истинная, слипаемость, смачиваемость).
- •Оценка эффективности работы газоочистного аппарата.
- •Движение частиц пыли в неподвижной среде. Движение частиц пыли в прямолинейном потоке газа.
- •Движение частиц пыли в прямолинейном потоке газа
- •Сухие механические газоочистные аппараты (пылеуловители).
- •Пылеосадительные камеры.
- •Инерционные пылеуловители. Радиальные пылеуловители (пылевые мешки).
- •Жалюзийные пылеуловители.
- •Циклоны. Определение гидравлического сопротивления и размера циклона.
- •Батарейные циклоны (мультициклоны).
- •18. Фильтры
- •19. Электрофильтры
- •20. Вихревые пылеуловители (вихревой пылеуловитель впу и вихревой пылеуловитель со встречными закрученными потоками вэп). Вихревой пылеуловитель «Вихрь»
- •21. Ротационные пылеуловители. Вентиляторные пылеуловители
- •22. Мокрая очистка газов. Аппараты для мокрой очистки газов. Достоинства и недостатки
- •23. Пылеулавливающие аппараты с промывкой газа жидкостью
- •24. Форсуночные скрубберы. Устройство и работа
- •25. Процессы тепло- и массообмена в скруббере
- •26. Скрубберы Вентури. Устройство и работа
- •27. Жидкопленочные пылеулавливающие аппараты
- •28. Барботажные пылеуловители. Пылеуловитель пвм
- •29. Пенные пылеулавливающие аппараты
- •30. Обеспыливание воздуха в промышленности
- •31. Сравнение типов различных пылеуловителей
- •32. Абсорбционное оборудование. Выбор абсорбера для очистки газов
- •33. Классификация абсорберов
- •34. Распыливающие (безнасадочные) аппараты. Достоинства и недостатки распыливающих аппаратов
- •Насадочные абсорберы: принцип работы насадочных абсорберов. Перераспределение жидкости между слоями.
- •Насадочные абсорберы. Гидродинамические режимы в насадочных абсорберах. Выбор насадки.
- •Выбор насадки
- •Аппараты физико-химической очистки газа. Абсорбция. Десорбция. Хемосорбция. Физико-химическая сущность процессов.
- •Факторы, воздействующие на скорость абсорбции.
- •Абсорбенты, применяемые для очистки газов.
- •Требования, предъявляемые к абсорбентам.
- •Пленочные абсорберы.
- •Тарельчатые абсорберы. Тарельчатые колонны со сливными устройствами.
- •Гидродинамические режимы работы тарелок.
- •Колонны с тарелками без сливных устройств. Типы провальных тарелок и гидродинамическое режимы работы провальных тарелок.
- •Адсорбционная очистка газа. Адсорбция. Физико-химическая сущность процесса.
- •Характеристика адсорбентов и их виды.
- •Десорбция.
- •Устройство адсорберов адсорбционных установок. Адсорберы с неподвижным слоем поглотителя.
- •Устройство адсорберов адсорбционных установок. Адсорберы с движущимся зернистым адсорбентом.
- •Устройство адсорберов адсорбционных установок. Адсорберы с кипящим (пседоожиженным) слоем адсорбента.
- •Системы очистки от основных паро- и газообразных выбросов. Туманоуловители.
- •Стратегия и тактика защиты гидросферы.
- •Виды и классификация загрязнителей. Классификация сточных вод.
- •Задачи и направления защиты гидросферы.
- •Процессы и аппараты для механической очистки сточных вод. Усреднители.
- •Процессы и аппараты для механической очистки сточных вод. Решетки.
- •58. Сооружения и аппараты для осаждения примесей из сточных вод. Песколовки (горизонтальные, тангенциальные, аэрируемые).
- •59. Сооружения и аппараты для осаждения примесей из сточных вод. Отстойники (горизонтальные, радиальные, вертикальные, тонкослойные, двухъярусные отстойники, отстойники-осветлители).
- •60. Очистка от всплывающих примесей. Нефтеловушки (горизонтальные, многоярусные (тонкослойные), радиальные).
- •61. Гидроциклоны. Напорные и открытые. Факторы, влияющие на эффективность очистки в гидроциклонах.
- •62. Очистка от всплывающих примесей. Фильтрационные установки.
- •63. Очистка от всплывающих примесей. Сетчатые фильтры.
- •65. Очистка от всплывающих примесей. Напорные фильтры.
- •66. Очистка от всплывающих примесей. Многослойные фильтры.
- •67. Очистка от всплывающих примесей. Фильтры «Полимер».
- •68. Введение в мембранные процессы. Определение мембраны.
- •69. Мембранные процессы. Микрофильтрация.
- •70. Способы обеззараживания воды.
- •71 Ультрафильтрация. Обратный осмос. Пьезодиализ. Диализ. Осмос. Электродиализ.
- •72. Проблемы акустического загрязнения окружающей среды
- •73. Источники шума и вибраций в жилых и общественных зданиях. Распространение шума.
- •75. Принципы и методы защиты от шума жилых зданий, территорий застройки. Шумозащитные земные насаждения.
- •Защита от радиоактивного загрязнения биосферы. Методы и системы защиты.
- •Флотация. Флотационные установки.
- •78.Установка электрохимической очистки сточных вод. Электрофильтры.
- •Электрофлотационные установки
- •Установки электрокоагуляции.
- •81.Биологическая очистка сточных вод. Поля фильтрации и орошения. Описание процесса биологической очистки
- •Электроизвлечение металлов. Конструкции электродов.
- •83. Аэробное сбраживание. Аэротенки
- •84. Анаэробное сбраживание. Метантенки.
- •85. Биофильтры.
- •86. Активный ил. Возраст ила. Вспухание.
- •87Методы обработки осадков сточных вод.Основные процессы, применяемые для обработки осадков производственных сточных вод.
- •88Уплотнение осадков. Флотационное уплотнение осадков.
- •89Анаэробное (метановое) сбраживание осадков.
- •Аэробная стабилизация осадков.
- •Кондиционирование осадков.Реагентная и тепловая обработка.
- •Жидкофазное окисление (метод Циммермана) осадков и отходов.Схема установки жидкофазного окисления.
- •Замораживание и оттаивание.
- •Обезвоживание осадков. Сушка осадков на иловых площадках. Фильтрование.Ленточный вакуум-фильтр.
- •Обезвоживание осадков. Фильтрование. Барабанный вакуум-фильтр.
- •Обезвоживание осадков. Фильтрование. Фильтр – пресс фпакм.
- •Т ермическая сушка осадков.
- •98. Метод гетерогенного катализа для обезвреживания отходов.Схемы термокаталитических реакторов.
- •99. Пиролиз отходов. Схема реактора для сухого пиролиза.
- •100. Плазменный метод. Схема плазменного аппарата.
- •101. Огневой метод ликвидации отходов.
- •102. Аппараты огневого обезвреживания и переработки отходов. Слоевые топки.
- •103. Барабанные вращающиеся печи.
- •104. Многоподовые печи для сжигания осадков
- •105. Камерные печи.
- •106. Реакторы с псевдоожиженным слоем для сжигания осадков.
- •107. Радиационные отходы. Их классификация.
- •108. Захоронение радиоактивных отходов в подземных хранилищах и могильнках.
- •109. Сооружение хранилищ радиоактивных отходов.
- •110. Переработка и утилизация твердых бытовых отходов. Норма накопления. Морфологический, фракционный и химический состав тбо.
- •112. Компостирование и брикетирование твердых бытовых отходов.
- •113. Мусоросжигание. Рисайклинг.
- •114. Захоронение тбо. Свалки. Полигоны.
- •115. Основные требования при проектировании полигона.
Устройство адсорберов адсорбционных установок. Адсорберы с движущимся зернистым адсорбентом.
Эти адсорберы представляют собой колонны, в которых зернистый адсорбент движется самотеком сверху вниз, либо перемещается при помощи специальных транспортных устройств (шнеки, элеваторы).
Схема адсорбера с движущимся слоем зернистого адсорбента показана на рис. 5.9.
Рис. 5.9. Адсорбер с движущимся слоем адсорбента: 1 – зона адсорбции; 2 – распределительные тарелки; 3 – холодильник; 4 – подогреватель; 5 – затвор
Газовая смесь, подаваемая в колонну через распределительную тарелку 2 поступает в адсорбционную зону и поднимается вверх.
Адсорбент движется по колонне под действием силы тяжести сверху вниз, противотоком газовой смеси.
Адсорбент из зоны адсорбции поступает в зону десорбции, где движется по трубкам теплообменника – десорбера 4, в межтрубном пространстве которого конденсируется греющий пар. Одновременно в трубки теплообменника-десорбера подают перегретый острый пар для отдувки, из адсорбента поглощенных компонентов.
Регенерированный и нагретый адсорбент проходит через гидравлический затвор 5, предотвращающий утечку острого пара с адсорбентом. Далее адсорбент поступает в сборник, куда газодувкой подается транспортирующий газ и по трубе – газоподъемнику адсорбент подается в трубки водяного холодильника 3, где охлаждается и снова поступает в адсорбционную зону.
Устройство адсорберов адсорбционных установок. Адсорберы с кипящим (пседоожиженным) слоем адсорбента.
При проведении адсорбции в кипящем (псевдоожиженном) слое адсорбента гидравлическое сопротивление слоя является весьма малым, поэтому можно создавать скорости газового потока, в несколько раз большие, чем в неподвижном слое адсорбента. Благодаря сочетанию высоких скоростей газа с очень развитой поверхностью фазового контакта можно значительно интенсифицировать процесс адсорбции. При интенсивном перемешивании частиц в кипящем слое в нем происходит быстрое выравнивание температуры и предотвращается опасность перегрева адсорбента.
При соприкосновении газового потока на выходе из кипящего слоя с отработанными насыщенными частицами адсорбента может происходить частичная десорбция поглощенного вещества из адсорбента. При интенсивном перемешивании в кипящем слое происходит сильное истирание твердых частиц адсорбента, в связи с чем для проведения описанного процесса необходимо применять адсорбенты, обладающие достаточной механической прочностью.
Рис. XIV-8. Однокамерный адсорбер с кипящим слоем поглотителя: 1 – корпус аппарата; 2 – циклонное устройство
Рис. XIV-9. Многокамерный адсорбер с кипящим слоем поглотителя: 1 – перфорированные тарелки; 2 – переточные трубы; 3 – труба для ввода адсорбента; 4 – штуцер для подачи паро-газовой смеси; 5 – щтуцер для отвода отработанного газа; 6 – труба для вывода отработанного адсорбента
В промышленности обычно применяются непрерывно действующие многокамерные адсорберы с кипящим слоем. На рис. XIV-8 показан однокамерный адсорбер с кипящим слоем, в котором газ непрерывно движется через корпус 1 снизу вверх, поддерживая находящийся на газораспределительной решетке слой адсорбента в псевдоожиженном состоянии. Газ удаляется из аппарата через циклонное устройство 2, служащее для выделения из газа захваченных им мелких частиц адсорбента. В однокамерных аппаратах такого типа интенсивное перемешивание твердых частиц приводит к значительной неравномерности времени пребывания в слое и соответственно различию степени их насыщения поглощаемым компонентом. В этих аппаратах, работающих по принципу прямотока фаз, не удается достичь концентрации адсорбтива в газовой фазе меньшей, чем равновесная, которая соответствует средней концентрации адсорбента в слое.
Указанные недостатки можно в значительной мере преодолеть при использовании многосекционных аппаратов, в которых взаимодействие фаз приближается к противоточному.
В многомерном адсорбере с кипящим слоем (рис. XIV-9) газ последовательно проходит через перфорированные тарелки 1, имеющие переточные трубы 2, по которым твердые частицы адсорбента «стекают» со ступени на ступень, противотоком к потоку газа. При псевдоожиженном адсорбенте на каждой ступени взаимодействие фаз приближается к режиму идеального смешения, в то время как для аппарата в целом это взаимодействие близко к режиму идеального вытеснения. В таких условиях газ более равномерно распределяется по площади поперечного сечения аппарата, сводится к минимуму «проскока» газа без взаимодействия с адсорбентом и увеличивается время взаимодействия фаз. В результате достигается более равномерная и полная «отработка» зерен адсорбента.