
- •«Системы защиты среды обитания»
- •Классификация и основы применения экобиозащитной техники.
- •Загрязнение окружающей среды. Нежелательные последствия загрязнения окружающей среды. Понятие об эффекте суммации. Триггерность. Синергизм. Устойчивость. Ксенность.
- •Классификация загрязнений окружающей среды. Опасные и вредные факторы среды обитания. Виды экологических нормативов.
- •Стратегия и тактика защиты окружающей среды. Безотходное и малоотходное производство.
- •Основные источники и характеристики загрязнений атмосферы. Загрязнения от природных процессов. Загрязнения антропогенного происхождения.
- •Нормирование атмосферных загрязнений. Классификация источников выделений и выбросов вредных веществ в атмосферу.
- •Стратегия и тактика защиты атмосферы.
- •Классификация пылеулавливающих аппаратов. Очистка газов от взвешенных частиц.
- •Классификация пыли по дисперсности. Характеристика пыли (плотность, кажущаяся и истинная, слипаемость, смачиваемость).
- •Оценка эффективности работы газоочистного аппарата.
- •Движение частиц пыли в неподвижной среде. Движение частиц пыли в прямолинейном потоке газа.
- •Движение частиц пыли в прямолинейном потоке газа
- •Сухие механические газоочистные аппараты (пылеуловители).
- •Пылеосадительные камеры.
- •Инерционные пылеуловители. Радиальные пылеуловители (пылевые мешки).
- •Жалюзийные пылеуловители.
- •Циклоны. Определение гидравлического сопротивления и размера циклона.
- •Батарейные циклоны (мультициклоны).
- •18. Фильтры
- •19. Электрофильтры
- •20. Вихревые пылеуловители (вихревой пылеуловитель впу и вихревой пылеуловитель со встречными закрученными потоками вэп). Вихревой пылеуловитель «Вихрь»
- •21. Ротационные пылеуловители. Вентиляторные пылеуловители
- •22. Мокрая очистка газов. Аппараты для мокрой очистки газов. Достоинства и недостатки
- •23. Пылеулавливающие аппараты с промывкой газа жидкостью
- •24. Форсуночные скрубберы. Устройство и работа
- •25. Процессы тепло- и массообмена в скруббере
- •26. Скрубберы Вентури. Устройство и работа
- •27. Жидкопленочные пылеулавливающие аппараты
- •28. Барботажные пылеуловители. Пылеуловитель пвм
- •29. Пенные пылеулавливающие аппараты
- •30. Обеспыливание воздуха в промышленности
- •31. Сравнение типов различных пылеуловителей
- •32. Абсорбционное оборудование. Выбор абсорбера для очистки газов
- •33. Классификация абсорберов
- •34. Распыливающие (безнасадочные) аппараты. Достоинства и недостатки распыливающих аппаратов
- •Насадочные абсорберы: принцип работы насадочных абсорберов. Перераспределение жидкости между слоями.
- •Насадочные абсорберы. Гидродинамические режимы в насадочных абсорберах. Выбор насадки.
- •Выбор насадки
- •Аппараты физико-химической очистки газа. Абсорбция. Десорбция. Хемосорбция. Физико-химическая сущность процессов.
- •Факторы, воздействующие на скорость абсорбции.
- •Абсорбенты, применяемые для очистки газов.
- •Требования, предъявляемые к абсорбентам.
- •Пленочные абсорберы.
- •Тарельчатые абсорберы. Тарельчатые колонны со сливными устройствами.
- •Гидродинамические режимы работы тарелок.
- •Колонны с тарелками без сливных устройств. Типы провальных тарелок и гидродинамическое режимы работы провальных тарелок.
- •Адсорбционная очистка газа. Адсорбция. Физико-химическая сущность процесса.
- •Характеристика адсорбентов и их виды.
- •Десорбция.
- •Устройство адсорберов адсорбционных установок. Адсорберы с неподвижным слоем поглотителя.
- •Устройство адсорберов адсорбционных установок. Адсорберы с движущимся зернистым адсорбентом.
- •Устройство адсорберов адсорбционных установок. Адсорберы с кипящим (пседоожиженным) слоем адсорбента.
- •Системы очистки от основных паро- и газообразных выбросов. Туманоуловители.
- •Стратегия и тактика защиты гидросферы.
- •Виды и классификация загрязнителей. Классификация сточных вод.
- •Задачи и направления защиты гидросферы.
- •Процессы и аппараты для механической очистки сточных вод. Усреднители.
- •Процессы и аппараты для механической очистки сточных вод. Решетки.
- •58. Сооружения и аппараты для осаждения примесей из сточных вод. Песколовки (горизонтальные, тангенциальные, аэрируемые).
- •59. Сооружения и аппараты для осаждения примесей из сточных вод. Отстойники (горизонтальные, радиальные, вертикальные, тонкослойные, двухъярусные отстойники, отстойники-осветлители).
- •60. Очистка от всплывающих примесей. Нефтеловушки (горизонтальные, многоярусные (тонкослойные), радиальные).
- •61. Гидроциклоны. Напорные и открытые. Факторы, влияющие на эффективность очистки в гидроциклонах.
- •62. Очистка от всплывающих примесей. Фильтрационные установки.
- •63. Очистка от всплывающих примесей. Сетчатые фильтры.
- •65. Очистка от всплывающих примесей. Напорные фильтры.
- •66. Очистка от всплывающих примесей. Многослойные фильтры.
- •67. Очистка от всплывающих примесей. Фильтры «Полимер».
- •68. Введение в мембранные процессы. Определение мембраны.
- •69. Мембранные процессы. Микрофильтрация.
- •70. Способы обеззараживания воды.
- •71 Ультрафильтрация. Обратный осмос. Пьезодиализ. Диализ. Осмос. Электродиализ.
- •72. Проблемы акустического загрязнения окружающей среды
- •73. Источники шума и вибраций в жилых и общественных зданиях. Распространение шума.
- •75. Принципы и методы защиты от шума жилых зданий, территорий застройки. Шумозащитные земные насаждения.
- •Защита от радиоактивного загрязнения биосферы. Методы и системы защиты.
- •Флотация. Флотационные установки.
- •78.Установка электрохимической очистки сточных вод. Электрофильтры.
- •Электрофлотационные установки
- •Установки электрокоагуляции.
- •81.Биологическая очистка сточных вод. Поля фильтрации и орошения. Описание процесса биологической очистки
- •Электроизвлечение металлов. Конструкции электродов.
- •83. Аэробное сбраживание. Аэротенки
- •84. Анаэробное сбраживание. Метантенки.
- •85. Биофильтры.
- •86. Активный ил. Возраст ила. Вспухание.
- •87Методы обработки осадков сточных вод.Основные процессы, применяемые для обработки осадков производственных сточных вод.
- •88Уплотнение осадков. Флотационное уплотнение осадков.
- •89Анаэробное (метановое) сбраживание осадков.
- •Аэробная стабилизация осадков.
- •Кондиционирование осадков.Реагентная и тепловая обработка.
- •Жидкофазное окисление (метод Циммермана) осадков и отходов.Схема установки жидкофазного окисления.
- •Замораживание и оттаивание.
- •Обезвоживание осадков. Сушка осадков на иловых площадках. Фильтрование.Ленточный вакуум-фильтр.
- •Обезвоживание осадков. Фильтрование. Барабанный вакуум-фильтр.
- •Обезвоживание осадков. Фильтрование. Фильтр – пресс фпакм.
- •Т ермическая сушка осадков.
- •98. Метод гетерогенного катализа для обезвреживания отходов.Схемы термокаталитических реакторов.
- •99. Пиролиз отходов. Схема реактора для сухого пиролиза.
- •100. Плазменный метод. Схема плазменного аппарата.
- •101. Огневой метод ликвидации отходов.
- •102. Аппараты огневого обезвреживания и переработки отходов. Слоевые топки.
- •103. Барабанные вращающиеся печи.
- •104. Многоподовые печи для сжигания осадков
- •105. Камерные печи.
- •106. Реакторы с псевдоожиженным слоем для сжигания осадков.
- •107. Радиационные отходы. Их классификация.
- •108. Захоронение радиоактивных отходов в подземных хранилищах и могильнках.
- •109. Сооружение хранилищ радиоактивных отходов.
- •110. Переработка и утилизация твердых бытовых отходов. Норма накопления. Морфологический, фракционный и химический состав тбо.
- •112. Компостирование и брикетирование твердых бытовых отходов.
- •113. Мусоросжигание. Рисайклинг.
- •114. Захоронение тбо. Свалки. Полигоны.
- •115. Основные требования при проектировании полигона.
33. Классификация абсорберов
По способу образования этой поверхности, что непосредственно связано с конструктивными особенностями абсорберов, их можно подразделить на четыре основные группы:
1. Распыливающие
2. Насадочные
3. Пленочные
4. Тарельчатые
34. Распыливающие (безнасадочные) аппараты. Достоинства и недостатки распыливающих аппаратов
Простейшее абсорбционное оборудование, обеспечивающее достаточную эффективность процесса, - это безнасадочные колонны. Они представляют собой цилиндрические или призматические сосуды, в которых орошающая жидкость разбрызгивается (обычно через серию форсунок) в направлении, противоположном потоку очищаемого газа, и в виде капель падает на дно абсорбера.
В распыливающих абсорберах контакт между фазами достигается распыливанием или разбрызгиванием жидкости в газовом потоке. Эти абсорберы подразделяют на следующие группы: 1) полые (форсуночные) распыливающие абсорберы, в которых жидкость распыляется на капли форсунками; 2) скоростные прямоточные распыливающие абсорберы, в которых распыление жидкости осуществляется за счет кинетической энергии газового потока; 3) механические распыливающие абсорберы, в которых жидкость распыляется вращающимися деталями.
Площадь поверхности контакта между газом и жидкостью пропорциональна суммарной площади поверхности капель. Чем мельче капли, тем больше суммарная площадь их поверхности ( при тотм же объеме) и лучше условия абсорбции. Однако слишком мелкие капли орошающей жидкости уносятся газовым потоком. Этот унос можно уменьшить с помощью каплеотделителя, встроенного в абсорбер либо установленного отдельно. Величина уноса ограничивает максимум полезной скорости потока в абсорбере, а также и размеры оборудования. Эффективность абсорбции в безнасадочных колоннах зависит от однородности распределения капель жидкости по всей колонне. Для достижения хорошего разделения орошающей жидкости диаметр колонны, как правило, не должен превышать 2 – 3 м. В противном случае падает эффективность и необходимо применять более сложную аппаратуру для распыления. С позиций однородности распределения капель орошающей жидкости предпочтительно применять цилиндрические абсорбционные колонны, а где прямоугольные, поскольку в углах труднее поддерживать однородность потока.
Преимущество безнасадочных колонн заключается в малом сопротивлении потоку газа (обычно от 100 до 300 Па), простоте конструкции и меньших помехах пылевых частиц в очищаемом газе. Недостатки – малая эффективность процессов диффузии и массообмена. При больших скоростях потока значительное количество орошающей жидкости уносится, следовательно, необходимость применения сниженных скоростей приводит к частичной потере преимуществ. Оборудование должно быть больших размеров либо можно использовать несколько колонн. Таким образом, этот метод применим только в определенных ситуациях, например при быстрой сорбции, или в тех случаях, когда не требуется тщательной очистки газа.
П
олые
распыливающие абсорберы (рис.1) представляют
собой полые колонны. В этих абсорберах
газ движется снизу вверх, а жидкость
подается через расположенные в верхней
части колонны 1 форсунки 2 с направлением
факела распыла обычно сверху вниз.
Эффективность таких абсорберов невысока,
что обусловлено перемешиванием газа
по высоте колонны и плохим заполнением
ее сечения факелом распыленной жидкости.
В результате объемный коэффициент
массопередачи и число единиц переноса
в этих аппаратах невелики. Поэтому
распылительные форсунки в полых
абсорберах часто устанавливают на
нескольких уровнях.
Рис. 1. Устройство полых распыливающих абсорберов
а – вертикального с верхним распылом жидкости; б – вертикального с распылом жидкости по высоте аппарата; в – горизонтального с перекрестным током; 1 – корпуса; 2 – форсунки; 3 – коллектор орошающей жидкости; 4 – брызгоотбойник; 5 – газораспределительная решетка.
Полые распыливающие абсорберы отличаются простотой устройства, низкой стоимостью, малым гидравлическим сопротивлением, их можно применять для обработки сильно загрязненных газов.
К недостаткам полых распыливающих абсорберов, помимо их низкой эффективности, относятся также низкие скорости газа (до 1 м/с) во избежание уноса, неудовлетворительная их работа при малых плотностях орошения, достаточно высокий расход энергии на распыление жидкости.
Распыливающие полые абсорберы целесообразно применять для улавливания хорошо растворимых газов.
Скоростные прямоточные распыливающие абсорберы отличаются тем, что в случае прямотока процесс можно проводить при высоких скоростях газа (до 20 – 30 м/с и выше), причем вся жидкость уносится с газом и отделяется от него в сепарационном пространстве 4. К этому типу аппаратов относится абсорбер Вентури (рис.2), основной частью которого является труба Вентури. Жидкость поступает в конфузор 1, течет в виде пленки и в горловине 2 распыляется газовым потоком. Затем жидкость газовым потоком выносится в диффузор 3, в котором скорость газа снижается и его кинетическая энергия переходит в энергию давления с минимальными потерями. Отделение капель от газа происходит в сепараторе 4.
Рис. 2. Устройство бесфорсуночного абсорбера Вентури:
а – с
эжекцией жидкости; б – с пленочным
орошением; 1 – конфузоры; 2 – горловины;
3 – диффузоры; 4 – сепараторы; 5 –
циркуляционная труба; 6 – гидравлический
затвор
Механические распыливающие абсорберы. В этих абсорберах разбрызгивание жидкости производится с помощью вращающихся устройств, т.е. с подводом внешней энергии для развития поверхности фазового контакта. На рис. 3 представлен такой абсорбер, в котором разбрызгивание жидкости осуществляется с помощью лопастей (рис.3,а) или дисков (рис.3,б), закрепленных на горизонтальных валах 1. Разбрызгивающие элементы 2 устанавливают так, что газ движется перпендикулярно или параллельно осям их валов.
По сравнению с абсорберами других типов механические абсорберы более компактны и эффективны, но они значительно сложнее по конструкции и требуют больших затрат энергии для проведения процесса. Поэтому механические распыливающие абсорбера целесообразно применять в тех случаях, когда распыление с помощью форсунок или газом, взаимодействующим с жидкостью, по каким-либо причинам не представляется возможным.
При проведении абсорбции в качестве абсорбентов применяют воду, органические растворители, не вступающие в реакцию с извлекаемым газом, и водные растворы этих веществ. При хемосорбции в качестве абсорбента используют водные растворы солей, органические вещества и водные суспензии различных веществ.
Установки для абсорбции могут быть разомкнутыми (без регенерации абсорбента) и циркуляционными (с регенерацией абсорбента).
Р
ис.
3. Распыливающие абсорберы:
а - с разбрызгиванием жидкости валками лопастного типа; б – с разбрызгиванием жидкости дисками; 1 – валы; 2 – разбрызгиватели; 3 - перегородки