- •1. Стационарные случайные процессы.
- •Глава 17 стационарные случайные функции
- •17.1. Понятие о стационарном случайном процессе
- •Эргодическое свойство стационарных случайных функций
- •Основные свойства плотности распределения:
- •Спектральная плотность мощности и корреляционная функция случайного процесса на выходе линейной цепи
Эргодическое свойство стационарных случайных функций
Рассмотрим некоторую стационарную случайную функцию и предположим, что требуется оценить ее характеристики: математическое ожидание и корреляционную функцию . Выше (см. 15.4) были изложены способы получения этих характеристик из опыта. Для этого нужно располагать известным числом реализаций случайной функции . Обрабатывая эти реализации, можно найти оценки для математического ожидания и корреляционной функции . В связи с ограниченностью числа наблюдений (функция не будет строго постоянной; ее придется осреднить и заменить некоторым постоянным ; аналогично, осредняя значения для разных , получим корреляционную функцию .
Этот метод обработки, очевидно, является довольно сложным и громоздким и к тому же состоит из двух этапов: приближенного определения характеристик случайной функции и также приближенного осреднения этих характеристик. Естественно возникает вопрос: нельзя ли для стационарной случайной функции этот сложный, двухступенчатый процесс обработки заменить более простым, который заранее базируется на предположении, что математическое ожидание не зависит от времени, а корреляционная функция - от начала отсчета?
Кроме того, возникает вопрос: при обработке наблюдений над стационарной случайной функцией является ли существенно необходимым располагать несколькими реализациями? Поскольку случайный процесс является стационарным и протекает однородно по времени, естественно предположить, что одна-единственная реализация достаточной продолжительности может служить достаточным опытным материалом для получения характеристик случайной функции.
При более подробном рассмотрении этого вопроса оказывается, что такая возможность существует не для всех случайных процессов: не всегда одна реализация достаточной продолжительности оказывается эквивалентной множеству отдельных реализаций.
Для примера рассмотрим две стационарные случайные функции и , представленные совокупностью своих реализаций на рис. 17.7.1 и 17.7.2.
Для случайной функции характерна следующая особенность: каждая из ее реализаций обладает одними и теми же характерными признаками: средним значением, вокруг которого происходят колебания, и средним размахом этих колебаний. Выберем произвольно одну из таких реализаций и продолжим мысленно опыт, в результате которого она получена, на некоторый участок времени . Очевидно, при достаточно большом эта одна реализация сможет дать нам достаточно хорошее представление о свойствах случайной функции в целом. В частности, осредняя значения этой реализации вдоль оси абсцисс - по времени, мы должны получить приближенное значение математического ожидания случайной функции; осредняя квадраты отклонений от этого среднего, мы должны получить приближенное значение дисперсии, и т. д.
Про такую случайную функцию говорят, что она обладает эргодическим свойством. Эргодическое свойство состоит в том, что каждая отдельная реализация случайной функции является как бы «полномочным представителем» всей совокупности возможных реализаций; одна реализация достаточной продолжительности может заменить при обработке множество реализаций той же общей продолжительности.
Рассмотрим теперь случайную функцию . Выберем произвольно одну из ее реализаций, продолжим ее мысленно на достаточно большой участок времени и вычислим ее среднее значение по времени на всем участке наблюдения. Очевидно, это среднее значение для каждой реализации будет свое и может существенно отличаться от математического ожидания случайной функции, построенного как среднее из множества реализаций. Про такую случайную функцию говорят, что она не обладает эргодическим свойством.
Непрерывная случайная величина. Плотность распределения случайной величины и ее свойства.
Случайная величина Х называется непрерывной, если ее функция распределения F(x) есть непрерывная, кусочно-дифференцируемая функция с непрерывной производной.
Так как для таких случайных величин функция F(x) нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю
P{X=α}=0 для любого α.
В качестве закона распределения, имеющего смысл только для непрерывных случайных величин существует понятие плотности распределения или плотности вероятности.
Вероятность попадания непрерывной случайной величины X на участок от x до x+Dx равна приращению функции распределения на этом участке:
P{x£ X <x+Dx}=F(x+Dx) - F(x).
Плотность вероятности на этом участке определяется отношением
(5.6)
Плотностью распределения (или плотностью вероятности) непрерывной случайной величины X в точке x называется производная ее функции распределения в этой точке и обозначается f(x). График плотности распределения называется кривой распределения.
Пусть имеется точка x и прилегающий к ней отрезок dx. Вероятность попадания случайной величины X на этот интервал равна f(x)dx. Эта величина называется элементом вероятности.
Вероятность попадания случайной величины X на произвольный участок [a, b[ равна сумме элементарных вероятностей на этом участке:
(5.7)
В геометрической интерпретации P{α≤X<β} равна площади, ограниченной сверху кривой плотности распределения f(x) и опирающейся на участок (α,β) (рис. 5.4).
Это соотношение позволяет выразить функцию распределения F(x) случайной величины X через ее плотность:
(5.8)
В геометрической интерпретации F(x) равна площади, ограниченной сверху кр
